05;12;08 Анизотропия электромеханических свойств и высокая пьезочувствительность композитов типа 1–1

© С.В. Глушанин, В.Ю. Тополов

Ростовский государственный университет, Ростов-на-Дону E-mail: topolov@phys.rnd.runnet.ru

Поступило в Редакцию 12 февраля 2001 г.

Впервые исследованы электромеханические свойства 1–1- и 1–0–1-композитов на основе сегнетопьезокерамики. Проанализировано влияние геометрического фактора на пьезоэлектрические коэффициенты, коэффициенты электромеханической связи, параметры приема и пьезочувствительность, немонотонное концентрационное поведение которых не имеет аналогов среди известных данных по пьезокомпозитам с другими связностями.

Проблемы создания новых структур пьезоактивных композитов, прогнозирования и оптимизации их физических свойств являются актуальными на протяжении последних лет [1–3]. Современные методы компьютерного моделирования структур и свойств облегчают поиск компонентов, способствующих дальнейшему эффективному применению композитных материалов в качестве элементов различных пьезотехнических устройств — гидрофонов, микрофонов, сенсоров, актюаторов и др. Несмотря на относительно простую микрогеометрию, ранее не исследовались пьезокомпозиты со связностью 1–1, два взаимодействующих компонента которых, подобно параллельным стержням [4], распределяются непрерывно в одном и том же направлении. Цель настоящего сообщения — анализ электромеханических свойств двухи трехкомпонентных пьезокомпозитов с элементами связности 1–1.

В предлагаемой модели 1–1-композит представляет собой систему чередующихся в направлениях OX_1 и OX_2 прямоугольных параллеленипедов из сегнетопьезокерамики (СПК) и полимера (рис. 1). Основания всех параллеленипедов лежат в плоскости X_1OX_2 , а их высоты, отсчитываемые вдоль оси поляризации OX_3 , равны h, причем $h \gg |LN|$ и $h \gg |LU|$. Дополнительно учитывается пористость полимера, т.е.

15

Рис. 1. Сечение 1–1-пьезокомпозита, поляризованного вдоль оси OX_3 . Штриховкой показан СПК компонент; t = |MS|/|MN| и n = |RS|/|RT| — параметры, определяющие объемную концентрацию каждого компонента.

последний имеет вид матрицы, разбитой на кубические ячейки Банно единичного объема [5,6], внутри которых имеются воздушные включения в форме прямоугольного параллеленипеда с ребрами, параллельными осям OX_i. Высота данного параллелепипеда составляет *ν*-ю часть длины ребра ячейки Банно, а площадь основания — *г*-ю часть площади основания данной ячейки. Физические константы пористого полимера определяются согласно [6,7] в зависимости от *v* и *r*. Соответствующий композит "СПК — пористый полимер" характеризуется связностью 1-0-1. Усреднение констант СПК и полимерного (однородного или пористого) компонентов проводится в два этапа по формулам [7,8]: сначала по параметру концентрации t вдоль оси OX₁ (при удовлетворении граничных условий электро- и эластостатики для протяженных вдоль OX_3 слоев типов LMSR и RSVU, а также типов MNTS и STWV; всюду $x_1 = \text{const}$, затем по *n* вдоль оси OX_2 (при удовлетворении аналогичных условий для слоев, ограниченных прямыми LU, MV и MV, NW). Рассмотренные структуры 1-1- (рис. 1) и 1-0-1-композитов описываются точечной группой симметрии mm2 и характеризуются сле-

Рис. 2. Концентрационные зависимости d_{3j}^* (a), e_{31}^* , e_{32}^* , $10^{-1}e_{33}^*$ (b), $-10^2k_{31}^*$, $10^2 k_{33}^*$ (c), $10^{lpha} \psi_f(d)$, рассчитанные для пьезокомпозитов "СПК ПКР-7М аральдит" и "СПК ПКР-7М — пористый аральдит" со связностями 1-1 и 1–0–1 соответственно: $a - d_{31}^{*}(t, 0.1)$ (1,5), $d_{31}^{*}(t, 0.5)$ (3,7), $d_{32}^{*}(t, 0.1)$ (2,6), $d_{32}^{*}(t, 0.5)$ (4, 8), 1–4 и 5–8 построены для 1–0–1-композитов с матрицами А и B соответственно, $d_{33}^*(t, 0.5) = 747$ рС/N (матрица A), $d_{33}^*(t, 0.5) = 758$ рС/N (матрица *B*); $b = e_{31}^{*}(t, 0.1)$ (1, 6), $e_{31}^{*}(t, 0.5)$ (4, 9), $e_{32}^{*}(t, 0.1)$ (2, 7), $e_{32}^{*}(t, 0.5)$ $(5, 10), 10^{-1}e_{33}^{*}(t, 0.1)$ (3, 8), 1-5 и 6–10 построены для 1–1- и 1–0–1-композитов соответственно, $e_{33}^*(t, 0.5) = 18.5 \text{ C/m}^2$ (1–1-композит), $e_{33}^*(t, 0.5) = 19.1 \text{ C/m}^2$ (1-0-1-композит); пористый полимер в структуре 1-0-1 представлен матрицей B; $c = (-10^2)k_{31}^*(t, 0.1)$ (1, 4, 7), $(-10^2)k_{31}^*(t, 0.5)$ (3, 6, 8), $10^2k_{33}^*(t, 0.1)$ $(2, 5), 10^2 k_{33}^*(t, 0.5)$ (5), 1–3 и 4–8 построены для 1–1- и 1–0–1-композитов соответственно, $k_{33}^*(t, 0.5) = 0.803$ (1–1-композит), $k_{33}^*(t, 0.5) = 0.813$ (1-0-1-композит, матрица A), $k_{33}^*(t, 0.5) = 0.815$ (1-0-1-композит, матрица В); пористый полимер в структуре 1-0-1 представлен матрицей А (4-6) или $B(7, 8); d = 10^{-1}\psi_1(5), \psi_1(8), 10^{-3}\psi_2(6), \psi_2(2), 10^{-1}\psi_3(7), 10\psi_3(3), \psi_4$ (1), 10 ψ_4 (4), 1, 5–7 построены для 1–0–1-композита (матрица A), 2–4, 8 — для 1-1-композита.

Письма в ЖТФ, 2001, том 27, вып. 15

дующей особенностью. Электромеханические свойства, определенные для конкретной связности (1–1 или 1–0–1), не изменяются при переходе от параметров (t; n) к (1 – t; 1 – n).

В качестве пьезоактивного компонента 1–1- и 1–0–1-композитов выбирается перовскитовая СПК ПКР–7М, отличающаяся высокими значениями пьезомодулей $d_{ij}^{FC,1}$ наивысшим среди СПК на основе Pb(Zr,Ti)O₃ пьезокоэффициентом e_{33}^{FC} [9] и обусловливающая рекордно высокую пьезочувствительность композитов с элементами связности 1–3 [1]. Второй компонент структуры 1–1 — непьезоактивный полимер аральдит. В структуре 1–0–1 аральдит является пористым и представляется в виде вышеописанной матрицы, содержащей систему плоскопараллельных ($\nu = 0.10$; r = 0.99, матрица A) или вытянутых вдоль оси OX₃ воздушных пор ($\nu = 0.99$; r = 0.10, матрица B)

¹ Здесь и далее электромеханические константы СПК и пьезокомпозита обозначаются верхним индексом *FC* (X^{FC}) и звездочкой (X^*) соответственно. Переход от X^* к X^{FC} осуществляется при t = n = 0 или t = n = 1.

с одинаковой объемной концентрацией νr . На рис. 2 изображены некоторые расчетные зависимости от параметров концентрации (t; n) эффективных пьезомодулей d_{3j}^* , пьезокоэффициентов e_{3j}^* , коэффициентов электромеханической связи $k_{3m}^* = d_{3m}^*/(\varepsilon_{33}^{*\sigma} s_{mm}^{*E})^{1/2}$ и факторов ψ_f , где s_{iq}^{*E} и $\varepsilon_{33}^{*\sigma}$ — упругие податливости и диэлектрическая проницаемость соответственно,

$$\psi_1 = g_{33}^*/g_{33}^{FC}; \ \psi_2 = (Q_h^*/Q_h^{FC})^2; \ \psi_3 = (Q_{33}^*/Q_{33}^{FC})^2; \ \psi_4 = Q_d^*/Q_d^{FC}.$$
 (1)

В формулах (1) пьезокоэффициент g_{33}^* , квадрат гидростатического параметра приема $(Q_h^*)^2 = (d_{31}^* + d_{32}^* + d_{33}^*)^2 / \varepsilon_{33}^{*\sigma}$ и квадрат параметра приема $(Q_{33}^*)^2 = d_{33}^* g_{33}^*$ описывают пьезочувствительность композита, параметр $Q_d^* = d_{33}^* / (\varepsilon_{33}^{*\sigma} / \varepsilon_0)^{1/2}$ характеризует удельную чувствительность, учитывающую внутреннее сопротивление пьезоприемника. Для расчетов используются значения электромеханических констант [7,9], измеренных при комнатной температуре.

То, что $d_{3i}^*(t,n)$, $e_{3i}^*(t,n)$ и $k_{31}^*(t,n)$ при n = 0.1 изменяются в более широких интервалах, чем при n = 0.5 (рис. 2, a-c), является следствием большего перераспределения внутренних механических и электрических полей при чередовании вдоль OX1 и OX2 слоев с заметно различающейся толщиной. Тем не менее при n = 0.5 обнаруживается более значительная, чем при n = 0.1, анизотропия $e_{33}^*(t, n)/|e_{3i}^*(t, n)| > 10$ (j = 1; 2), даже несмотря на то, что вблизи $t = 0.5 e_{31}^*$ и e_{32}^* различаются в 3–40 раз. Концентрационные зависимости, подобные $e_{3i}^{*}(t, n)$, ранее не рассматривались в литературе (см., например, [1,3,6,10,11]) и могут представлять интерес для некоторых приложений. Различия между конфигурациями кривых $d_{3i}^{*}(t, 0.1)$ и $e_{3i}^{*}(t, 0.1)$ (ср. рис. 2, a и b) обусловлены поведением упругих податливостей $s_{ia}^{*E}(t, 0.1)$; влияние последних, особенно с q = 3, становится более сильным при переходе от однородного аральдита к пористому (матрицы А и В). Постоянство $d_{33}^{*}(t, 0.5), e_{33}^{*}(t, 0.5)$ и $k_{33}^{*}(t, 0.5)$ связано с тем, что изменение толщин слоев |RU| и |LR| при |LR| = |MN| (рис. 1) не влияет на объемную концентрацию СПК компонента и отклик композита в направлении ОХ₃ при внешнем воздействии вдоль этой же оси вследствие граничных условий при $x_i = \text{const} (j = 1; 2).$

Формирование пор вызывает значительные изменения параметров композита из (1). При $t = 1 - n \ll 1$ установлены резкое возрастание пьезочувствительности структуры 1–0–1 по сравнению с 1–1

и $\psi_f \approx 10...4.2 \cdot 10^4$. Переход от матрицы $A \\ K B$ существенно не влияет на $d_{33}^*(t,n)$, $e_{33}^*(t,n)$, $k_{33}^*(t,n)$ и $\psi_f(t,n)$, и это является важным преимуществом данного 1–0–1-композита. В отличие от 1–3-композита "СПК стержни–полимер" (симметрия ∞mm) [4,6,7] в 1–0–1-композите (симметрия mm2) при $t = 1 - n \ll 1$ создается система стержней, которые состоят из пористого полимера и окружены тонкими СПК слоями, параллельными плоскости X_1OX_3 или X_2OX_3 . Определенный интерес представляют зависимости $k_{31}^*(t,n)$: на их поведение (ср. кривые I,3,4,6-8 на рис. 2, c) сильно влияет упругая податливость s_{11}^{*E} , в значительной мере зависящая от упругих свойств пористого полимера. Следствием такого влияния является заметное различие между факторами анизотропии d_{3j}^* и k_{3j}^* (например, при $t = 0.5 d_{33}^*/d_{31}^* \approx -6.6...-5.2$ и $k_{33}^*/k_{31}^* \approx -34...-9.1$), не свойственное композитам с симметрией ∞mm [3,4,6,7,11].

Таким образом, приведенные выше результаты расширяют физические представления о факторах, благоприятствующих большой пьезоэлектрической анизотропии [3,6,11] и повышению параметров приема [1,2,12], а также свидетельствуют о перспективности использования структур типа 1–1 с большими значениями $e_{33}^*/|e_{3j}^*|$, k_{33}^* , $k_{33}^*/|k_{31}^*|$ и ψ_f^* .

Список литературы

- [1] Тополов В.Ю., Турик А.В. // Письма в ЖТФ. 2001. Т. 27. В. 2. С. 84-89.
- [2] Sigmund O., Torquato S., Aksay I.A. // J. Mater. Res. 1998. V. 13. N 4. P. 1038– 1048.
- [3] Тополов В.Ю., Турик А.В. // Письма в ЖТФ. 1998. Т. 24. В. 11. С. 65-70.
- [4] Newnham R.E. // MRS Bull. 1997. V. 22. N 5. P. 20-33.
- [5] Banno H. // Ceram. Bull. 1987. V. 66. N 9. P. 1332–1337.
- [6] Levassort F., Topolov V.Yu., Lethiecq M. // J. Phys. D: Appl. Phys. 2000. V. 33. N 16. P. 2064–2068.
- [7] Levassort F., Lethiecq M., Certon D., Patat F. // IEEE Trans. Ultrason., Ferroelec., a. Freq. Contr. 1997. V. 44. N 2. P. 445–452.
- [8] Akcakaya E., Farnell G.W. // J. Appl. Phys. 1988. V. 64. N 9. P. 4469-4473.
- [9] Высокоэффективные пьезокерамические материалы (Справочник). Ростов н/Д: Книга, 1994. 32 с.
- [10] Grekov A.A., Kramarov S.O., Kuprienko A.A. // Ferroelectrics. 1987. V. 76. N 1–4. P. 43–48.
- [11] Topolov V.Yu., Turik A.V. // J. Appl. Phys. 1999. V. 85. N 1. P. 372-379.
- [12] Петров В.М. // ЖТФ. 1987. Т. 57. В. 11. С. 2273–2275.