Локальная структура примесных центров Tm^{2+} и Yb³⁺ во фторидах MeF₂ (Me = Ca, Sr, Ba)

© А.Д. Горлов, В.А. Чернышев, М.Ю. Угрюмов, А.В. Абросимов

Уральский государственный университет им. А.М. Горького, 620083 Екатеринбург, Россия

E-mail: Vladimir.Chernyshev@usu.ru

В оболочечной модели в приближении парных потенциалов рассчитана локальная кристаллическая структура кубических примесных центров $MeF_2:Tm^{2+}$ и $MeF_2:Yb^{3+}$, а также тригональных и тетрагональных центров $MeF_2:Yb^{3+}$ (Me = Ca, Sr, Ba).

Работа выполнена при поддержке грантов REC-005 (ЕК-005-XI) и Российского фонда фундаментальных исследований (№ 04-02-16427).

Интерес к исследованию примесных центров редкоземельных элементов (РЗМ) в широкозонных диэлектрических кристаллах MeF_2 (Me = Ca, Sr, Ba) связан с использованием этих материалов в качестве лазерных сред, детекторов ионизирующих излучений и сцинтилляторов. РЗМ ион (Tm^{2+}, Yb^{3+}) замешает катион Me^{2+} . при этом образуются кубические примесные центры (ПЦ) [1-3], а также в случае неизовалентного замещения ионом Yb³⁺ — тригональные и тетрагональные [4-6], в которых избыточный заряд компенсируется дополнительным дефектом решетки. Таким дефектом может быть ион F⁻, находящийся в ближайшем междоузлии на оси С₃ или С₄ (рис. 1). Локальная кристаллическая структура ПЦ MeF₂:Yb³⁺ и MeF₂:Tm²⁺ исследована методом ДЭЯР [1-6], однако этим методом достаточно сложно определить положение ионов F⁻, непосредственно окружающих примесный ион, вследствие эффектов ковалентности и перекрывания, а также невозможно определить положение катионов, обладающих нулевым ядерным спином. Одни из первых работ по расчету локальной структуры примесных центров РЗМ ионов в MeF2 были сделаны Малкиным с сотрудниками [7,8]. В настоящей работе для определения локальной структуры ПЦ используется оболочечная модель и приближение парных взаимодействий.

1. Модель расчета энергии кристалла

Равновесные положения ионов в кристалле могут быть найдены путем минимизации энергии кристаллической решетки. В оболочечной модели в приближении парных взаимодействий выражение для энергии решетки имеет вид

$$U_{\text{lat}} = \frac{1}{2} \sum_{i} \sum_{k(\neq i)} V_{ik} + \frac{1}{2} \sum_{i} k_i \delta_i^2, \qquad (1)$$

где $k_i \delta_i^2$ — энергия взаимодействия остов-оболочка *i*-го иона, δ_i — смещение оболочки относительно его остова, V_{ik} — энергия взаимодействия между *i*-м и *k*-м ионами,

которая может быть выражена следующим образом:

$$V_{ik} = \frac{X_i X_k}{|\mathbf{r}_i - \mathbf{r}_k|} + \frac{Y_i X_k}{|\mathbf{r}_i - \mathbf{r}_k + \boldsymbol{\delta}_i|} + \frac{X_i Y_k}{|\mathbf{r}_i - \mathbf{r}_k - \boldsymbol{\delta}_k|} + \frac{Y_i Y_k}{|\mathbf{r}_i - \mathbf{r}_k + \boldsymbol{\delta}_i - \boldsymbol{\delta}_k|} + f_{ik}(|\mathbf{r}_i - \mathbf{r}_k|) + g_{ik}(|\mathbf{r}_i - \mathbf{r}_k + \boldsymbol{\delta}_i - \boldsymbol{\delta}_k|), \quad (2)$$

где функция

$$f_{ik}(r) = -A_{ik} \exp(-B_{ik}r)/r \tag{3}$$

описывает близкодействующую экранировку электростатического взаимодействия остовов ионов, а функция

$$g_{ik}(r) = C_{ik} \exp(-D_{ik}r) - \lambda_{ik}/r^6$$

 близкодействующее отталкивание между оболочками ионов, записанное в форме потенциала Борна-Майера и взаимодействие Ван-дер-Ваальса; Х_i, Y_i заряды остова и оболочки *i*-го иона, **r**_i — вектор, определяющий положение его остова. В настоящей работе использовались следующие значения для зарядов остовов: $X_{\rm F} = +5$, $X_{\rm Me}=+8,\,X_{\rm Yb}=+11,\,X_{\rm Tm}=+10.$ Заряды оболочек были определены из условия $Z_i = X_i + Y_i$, где Z_i — заряд иона в данном соединении. Расчет энергии кулоновского взаимодействия выполнялся методом Эвальда. Параметры близкодействующего взаимодействия для MeF₂ приведены в работе [9]. При расчете близкодействующего взаимодействия Yb³⁺-F⁻ и Tm²⁺-F⁻ электростатическое экранирование не учитывалось, параметры С и D и параметр k иона Yb³⁺ были получены из условия оптимального совпадения рассчитанных и экспериментально определенных радиальных и угловых смещений анионов в ПЦ MeF₂:Yb³⁺ и MeF₂:Tm²⁺ ($C_{Yb,T-F} = 262.594$, $D_{\mathrm{Yb-F}} = 2.054, \ D_{\mathrm{Tm-F}} = 2.181, \ k_{\mathrm{Yb}} = 25.020 \ \mathrm{a.u.}).$ Для расчета локальной кристаллической структуры ПЦ использовался метод внедренного кластера, дефектная область включала семь и более координационных сфер.

Сфера (тип ионов)	CaF ₂			SrF ₂			BaF_2	
	Чистый кристалл	Экспери- мент [3]	Расчет	Чистый кристалл	Экспери- мент [3]	Расчет	Чистый кристалл	Расчет
1 (F) 2 (Me) 3 (F)	235.8 385.1 451.6	452.4(6)	238.5 386.0 452.0	250.3 408.8 479.3	479.0(14)	244.3 407.1 479.3	267.5 436.9 512.3	251.1 434.0 514.2

Таблица 1. Радиальные координаты ионов вблизи Tm²⁺ в кубических ПЦ MeF₂:Tm²⁺ (pm)

Примечание. Числа в скобках — величина ошибки в единицах последнего знака.

Таблица 2. Реальные координаты ионов вблизи Yb³⁺ в кубических ПЦ MeF₂: Yb³⁺ (pm)

Сфера (тип ионов)	CaF ₂			SrF_2			BaF ₂		
	Чистый кристалл	Экспери- мент [1]	Расчет	Чистый кристалл	Экспери- мент [1]	Расчет	Чистый кристалл	Экспери- мент [1]	Расчет
1 (F) 2 (Me) 3 (F)	235.8 385.1 451.6	448.7(7)	235.5 391.6 449.7	250.3 408.8 479.3	475.3(6)	238.7 412.6 476.8	267.5 436.9 512.3	506.5(18)	241.8 439.7 512.2

Примечание. Числа в скобках — величина ошибки в единицах последнего знака.

2. Кубические примесные центры Tm^{2+} : MeF₂

В кубических ПЦ Tm^{2+} : MeF₂ (табл. 1) расчеты предсказывают увеличение расстояния до лигандов на 3 рт в CaF₂ по сравнению с чистым кристаллом и уменьшение на 6 и 10 рт в SrF₂ и BaF₂. Согласно расчетам, ближайшее катионное окружение Tm^{2+} расширяется в CaF₂ и сжимается в SrF₂ и BaF₂. Угловые координаты ионов в CaF₂ изменяются мало (в пределах 0.02°), в SrF₂ и BaF₂ в третьей координационной сфере увеличиваются на 0.06° и 0.12°.

3. Кубические, тетрагональные и тригональные ПЦ Yb³⁺ : MeF₂

Согласно расчетам, в кубических ПЦ (табл. 2) расстояние Yb^{3+} -лиганд уменьшается, причем изменение расстояния в ряду MeF₂ возрастает с увеличением разности между ионными радиусами Yb^{3+} и замещенного катиона. Непосредственное катионное окружение примесного иона расширяется. Угловые координаты ионов в третьей координационной сфере в CaF₂, SrF₂ и BaF₂ увеличиваются на 0.18, 0.26 и 0.33°.

В тетрагональном центре $CaF_2: Yb^{3+}$ согласно расчетам происходит смещение P3M иона навстречу фторукомпенсатору (рис. 2) на 23 pm. Компенсатор при этом смещается к примесному иону на 11 pm и расталкивает четверку лигандов, расположенную между ним и иттербием. Угол между осью C_4 и направлением на ион этой четверки увеличивается. Катионы, окружающие примесный ион, смещаются следующим образом. Четверка ионов типа 220 (рис. 1) расширяется в плоскости, перпендикулярной оси C_4 , и сдвигается вниз вдоль оси, четырехугольники типа 202 и $20\overline{2}$ сдвигаются соответственно вверх и вниз вдоль оси C_4 и сжимаются в перпендикулярной ей плоскости.

Рис. 1. Положение F⁻-компенсатора в структуре флюорита. Темные кружки — анионы, светлые — катионы.

Рис. 2. Смещения анионов в тетрагональном примесном центре.

Рис. 3. Смещения анионов в тригональном примесном центре.

В тригональных ПЩ SrF₂: Yb³⁺ и BaF₂: Yb³⁺ расчет предсказывает одинаковый характер смещений (рис. 3). Примесный ион смещается от фтора-компенсатора по оси C_3 на 4.4 pm в SrF₂ и 4.6 pm в BaF₂. Фторкомпенсатор смещается относительно междоузлия в чистом кристалле к Yb³⁺ на 44 pm в BaF₂ и на 27 pm в SrF₂. Непосредственное окружение примесного иона сжимается, при этом наибольшие смещения испытывает ион (111) (рис. 1), который смещается к Yb³⁺ на 45 pm в BaF₂ и на 31 pm в SrF₂. Угол между осью C_3 и направлением на ион увеличивается для тройки лигандов (111) и уменьшается для (111). Координаты анионов вблизи Yb³⁺ в тетрагональном и тригональном ПЩ приведены в табл. 3, 4. **Таблица 3.** Координаты анионов вблизи Yb^{3+} в тетрагональном ПЦ $CaF_2: Yb^{3+}$ (начало координат на примесном ионе)

Сфалера, тип ядер, (их количество)	R, pm	θ , deg	ϕ , deg
1, 111(4)	235.2	63.92	45
1, 111(4)	247.9	129.94	45
\mathbf{F}_k	238.4	0	0

Таблица 4. Координаты анионов вблизи Yb³⁺ в тригональных ПЦ (начало координат на примесном ионе)

		SrF ₂ :Yb	BaF_2 : Yb ³⁺		
Сфалера, тип ялер	R, pm	θ , deg		R, pm	θ , deg
(их количество)	Расчет	Расчет	Экспери- мент [5]	Расчет	Расчет
1, 111(1)	224.2	0	0	226.7	0
$1, \overline{1}\overline{1}\overline{1}(1)$	239.4	180	180	243.3	180
1, 111(3)	241.9	70.57	71.0(1)	245.9	70.97
1, 111(3)	238.9	109.03	109.6(1)	241.4	109.14
\mathbf{F}_k	478.8	0	0	499.9	0

Таким образом, в рамках оболочечной модели с одним набором параметров близкодействующего взаимодействия $Yb^{3+}-F$ и $Tm^{2+}-F$ удалось одновременно описать структуру кубических и низкосимметричных ПЦ.

Список литературы

- C.A. Ramos, C. Fainstein, M. Tovar. Phys. Rev. B. 32, 1, 64 (1985).
- [2] D. Kiro, W. Low. Phys. Rev. Let. 20, 18, 1010 (1968).
- [3] W. Hayes, P.H.S. Smith. J. Phys. C: Sol. Stat. Phys. 4, 841 (1971).
- [4] О.В. Назарова, Т.И. Санадзе. Сообщ. АН СССР 87, 2, 329 (1977).
- [5] Б.Г. Берулава, Р.И. Мирианашвили, О.В. Назарова, Т.И. Санадзе. ФТТ 19, 6, 1771 (1977).
- [6] J.M. Baker, E.R. Davies, J.P. Hurrell. Proc. Roy. Soc. A 308, 403 (1968).
- [7] Б.З. Малкин. ФТТ **11**, *5*, 1208 (1969).
- [8] М.П. Давыдова, Б.З. Малкин, А.Л. Столов. В сб.: Спектроскопия кристаллов. Наука, Л., (1978). С. 27.
- [9] А.Е. Никифоров, А.Ю. Захаров, В.А. Чернышев. ФТТ 46, 9, 1588 (2004).