Штарковская структура уровней иона Yb^{3+} в $(Yb_xY_{1-x})_2Ti_2O_7$ и кристаллическое поле в редкоземельных титанатах со структурой пирохлора

© С.А. Климин, М.Н. Попова, Е.П. Чукалина, Б.З. Малкин*, А.Р. Закиров*, E. Antic-Fidancev**, Ph. Goldner**, P. Aschehoug**, G. Dhalenne***

Институт спектроскопии Российской академии наук, 142190 Троицк, Московская обл., Россия * Казанский государственный университет, 420008 Казань, Россия ** Laboratoire de Chimie Appliquee de l'État Solide, CNRS UMR 7574, ENSCP, F-75231 Paris, Cedex 05, France *** Laboratoire de Physico-Chimie de l'État Solide, Université Paris-Sud, F-91405 Orsay, France E-mail: popova@isan.troitsk.ru

Исследованы спектры поглощения монокристаллов $Yb_2Ti_2O_7$ и спектры люминесценции и возбуждения люминесценции поликристаллических образцов $Y_2Ti_2O_7$: Yb (1%) при температурах 4.2–300 К. Проведен анализ на основе теории кристаллического поля с использованием модели обменных зарядов. Исходя из найденного набора параметров кристаллического поля для $Yb_2Ti_2O_7$, получены наборы параметров для других редкоземельных титанатов, удовлетворительно описывающие все известные экспериментальные данные.

Работа поддержана Российским фондом фундаментальных исследований (грант № 04-02-17346 и 03-02-16449) и грантами по программам фундаментальных исследований Президиума РАН "Квантовая макрофизика" и ОФН РАН "Сильно коррелированные электроны в полупроводниках, металлах, сверхпроводниках и магнитных материалах".

Редкоземельные (РЗ) двойные оксиды с общей формулой $R_2A_2O_7$ (где A = Ti, Sn, Zn, Hf, a R — редкая земля или иттрий) имеют структуру пирохлора [1]. Гранецентрированная кубическая кристаллическая решетка (пространственная группа $Fd\bar{3}m$) организована таким образом, что РЗ ионы R³⁺ образуют подрешетку тетраэдров, соединенных между собой через одну вершину (рис. 1, *a*). Магнитное диполь-дипольное взаимодействие между R³⁺ ионами не может стабилизировать какуюто одну конфигурацию магнитных моментов: основное состояние многократно вырождено. Для пояснения этой ситуации на рис. 1, b показана одна из шести возможных конфигураций четырех спинов, расположенных в вершинах правильного тетраэдра, таких, что два спина направлены к центру тетраэдра, а два — от центра. В результате дальний магнитный порядок в соединениях $R_2A_2O_7$ (где A = Ho, Dy, Tb, Yb), в которых R^{3+} ионы имеют магнитное основное состояние, не наблюдался вплоть до температур 0.05 К, реализуются структуры типа спиновой жидкости или спинового льда с ближним порядком [2-4]. Для интерпретации низкотемпературной магнитной структуры и спиновой динамики нужно знать энергии низколежащих состояний РЗ иона, определяемые кристаллическим полем (КП). Экспериментальные данные по положению уровней энергии РЗ ионов в пирохлорах скудны и получены в основном из нейтронных исследований [5-8]. Параметры КП, полученные ранее для Yb₂Ti₂O₇ [9,10], хорошо согласуются с экспериментальными данными по намагниченности, магнитной

восприимчивости, теплоемкости и градиенту электрического поля на ядре 172 Yb, однако сильно различаются между собой. Кроме этого, оба набора параметров КП сильно отличаются от параметров КП, полученных для Ho₂Ti₂O₇ [5], что трудно объяснить. Для нахождения параметров КП важно опираться на экспериментальные данные для уровней энергии РЗ иона в возможно более широком интервале энергий. Их можно получить из оптических измерений.

Настоящая работа посвящена спектроскопическому исследованию $Yb_2Ti_2O_7$, нахождению параметров КП для этого соединения и анализу тенденций в изменении параметров КП по ряду титанатов со структурой пирохлора $R_2Ti_2O_7$.

Рис. 1. a — подрешетка тетраэдров R_4 в структуре $R_2Ti_2O_7$. Атомы Ti и O не показаны. b — "фрустрация" спинов.

1. Эксперимент

Монокристаллы Yb₂Ti₂O₇ с характерным размером ~ 10 mm, прозрачные, хорошего оптического качества были выращены методом "плавающей зоны". Спектры поглощения в широком спектральном (9000–14000 cm⁻¹) и температурном (4.5–300 K) диапазонах с разрешением от 0.15 cm⁻¹ были измерены на Фурье-спектрометре ВОМЕМ DA3.002 при помощи оптического криостата производства Киевского СКБ. В эксперименте использованы три специально приготовленные плоскопараллельные пластины толщиной 1.55, 0.6 и 0.09 mm.

Спектры люминесценции изучались в соединении $Y_2Ti_2O_7$: Yb (1%), поскольку в концентрированном соединении люминесценция не была обнаружена из-за эффекта концентрационного тушения. Поликристаллические образцы $(Yb_{0.99}Y_{0.01})_2Ti_2O_7$ были приготовлены методом твердофазного синтеза при 1400°С. Рентгеновский анализ подтвердил структуру пирохлора, но также было обнаружено небольшое количество примеси Y_2O_3 . Из полученного порошка были приготовлены спрессованные таблетки, которые прикреплялись к хладопроводу гелиевого криостата замкнутого цикла. Спектры люминесценции возбуждались непрерывным лазером Coherent 890 (Ti: сапфир) с накачкой аргоновым лазером и регистрировались при помощи охлаждаемого фотодиода InGaAs.

2. Экспериментальные результаты

Электронная конфигурация 4f¹³ для свободного иона Yb³⁺ имеет только два уровня: ${}^{2}F_{5/2}$ и ${}^{2}F_{7/2}$. Эти уровни разделены энергетическим интервалом $\sim 10\,000\,{
m cm^{-1}}$ [11]. В структуре пирохлора ион иттербия занимает позицию с симметрией D_{3d} (рис. 2, a). КП расщепляет основной уровень ${}^{2}F_{7/2}$ на четыре крамерсовых дублета $3\Gamma_4 + \Gamma_{56}$, а возбужденный уровень ${}^2F_{5/2}$ — на три крамерсовых дублета $2\Gamma_4 + \Gamma_{56}$ (рис. 2, *b*). Можно ожидать, что при низкой температуре в спектре поглощения будут наблюдаться три линии, соответствующие переходам с основного штарковского подуровня мультиплета ²F_{7/2} на штарковские подуровни мультиплета ${}^{2}F_{5/2}$. Соответственно в спектре люминесценции должно быть четыре линии. Бесфононные переходы разрешены только в магнитодипольном приближении. Электронно-колебательные переходы разрешены в электродипольном приближении, и при условии достаточно сильного электрон-фононного взаимодействия интенсивность их может быть значительной. Именно такой случай реализуется в исследуемом соединении Yb₂Ti₂O₇.

На рис. 3 представлен спектр поглощения монокристалла $Yb_2Ti_2O_7$ при температуре 5 К (нижний спектр). Вместо ожидаемых трех линий в спектре наблюдается сложная структура. В ней можно выделить три самые узкие линии (10 297, 10 821 и 11 005 cm⁻¹). Их мы

отнесли к переходам с основного подуровня мультиплета ${}^{2}F_{7/2}$ на штарковские подупровни мультиплета ${}^{2}F_{5/2}$. Эта интерпретация подтверждается наличием сходных фононных крыльев у каждой из трех линий. На рис. 3 спектр сдвинут по оси волновых чисел так, чтобы были совмещены положения трех самых узких линий. Положение пиков в трех фононных крыльях совпадает. Общая протяженность фононного крыла составляет около 600 сm⁻¹, что примерно равно протяженности фононного спектра Yb₂Ti₂O₇ [12]. Наиболее интенсивный пик фононного крыла при ~ 52 сm⁻¹ наблюдается для всех трех линий и виден также с антистоксовой стороны, причем антистоксова компонента исчезает с понижением температуры (рис. 4, *a*, *c*).

Рис. 2. *а* — ближайшее окружение иона иттербия в структуре $Yb_2Ti_2O_7$ (симметрия D_{3d}). Два структурно неэквивалентных типа ионов O^{2-} вносят разный вклад в КП. *b* — схема штарковских уровней для иона Yb^{3+} в КП симметрии D_{3d} . Сплошные стрелки показывают переходы в поглощении и люминесценции при низкой температуре. Штриховые — соответствуют поглощению при повышенной температуре, когда растет заселенность возбужденных штарковских уровней.

Рис. 3. Спектр пропускания $Yb_2Ti_2O_7$ при 5 К. Цифры в верхней части рисунка обозначают положение пиков в фононных крыльях относительно бесфононной линии (в cm⁻¹).

$Y_{2}Ti_{2}O_{7}$: Yb (1%)		Yb ₂ Ti ₂ O ₇ (${}^{2}F_{7/2}$, ${}^{2}F_{5/2}$)		$\mathrm{Er}_{2}\mathrm{Ti}_{2}\mathrm{O}_{7}(^{4}I_{15/2})$		$\mathrm{Ho}_{2}\mathrm{Ti}_{2}\mathrm{O}_{7}(^{5}I_{8})$		$\mathrm{Tb}_{2}\mathrm{Ti}_{2}\mathrm{O}_{7}~(^{7}F_{6})$	
Эксперимент		Эксперимент	Вычисления	Экспери- мент [8]	Вычисления	Экспери- мент [5,21]	Вычисления	Экспери- мент [4,6]	Вычисления
² <i>F</i> _{7/2}	$0 \\ g_{\parallel} = 1.79; \\ g_{\perp} = 4.27 \\ [10] \\ 481 \\ 657 \\ 976 \\ \end{cases}$	476 655 —	$0(\Gamma_4) g_{\parallel} = 1.836; g_{\perp} = 4.282 528(\Gamma_4) 649(\Gamma_{56}) 972(\Gamma_4)$	0 $g_{\perp} > 6$ 51 59 $-$	$0 \\ (\Gamma_4) \\ g_{\parallel} = 2.32; \\ g_{\perp} = 6.8 \\ 51.6 (\Gamma_{56}) \\ 58.8(\Gamma_4) \\ 135(\Gamma_4)$	$0(E) \\ g_{\parallel} = 18.70 \\ - \\ 177.4(E) \\ 209.7(E) \\ - \\ 475.8(E)$	$0(E) g_{\parallel} = 19.32 166 (A_2) 177(E) 213(E) 224(A_1) 471(E) $	$0(E) \\ g_{\parallel} = 10.2 \pm 0.6 \\ 12.1 \pm 0.5(E) \\ g_{\parallel} = 11.8 \pm 1.6 \\ 83.5 \pm 0.7 \\ 116.7 \\ \end{cases}$	$\begin{array}{c} 0(E) \\ g_{\parallel} = 10.4 \\ 12.1(E) \\ g_{\parallel} = 13.4 \\ 76.4(A_2) \\ 120(A_1) \\ 284(E) \end{array}$
² F _{5/2}	10291 10847 11014	10297 10821 11005	$\begin{array}{c} 10293 \\ (\Gamma_4) \\ 10736 \\ (\Gamma_4) \\ 11004 \\ (\Gamma_{56}) \end{array}$	_ _ _ _	$\begin{array}{c} 447(\Gamma_4) \\ 458(\Gamma_{56}) \\ 490(\Gamma_4) \\ 710(\Gamma_{56}) \end{array}$	572.6(E) 621(E) 	$545(A_1) 564(A_2) 565(E) 617(E) 647(A_1) 647(A_1) 647(A_1) \\ $		$314(A_2) 318(A_1) 439(E) 510(A_1)$

Таблица 1. Энергии (cm⁻¹), симметрия (неприводимые представления группы D_{3d}) и *g*-факторы для штарковских уровней РЗ ионов в $R_2Ti_2O_7$

Положения двух возбужденных штарковских подуровней основного состояния ${}^{2}F_{7/2}$ были определены из температурной зависимости спектра в области антистоксовой электронно-колебательной структуры линии 10 297 сm⁻¹ (рис. 4, *c*). На рис. 4, *a*, *c* присутствует также ряд узких линий (вблизи 10 297 сm⁻¹), которые можно объяснить наличием других центров Yb³⁺ в исследуемом кристалле.

Рис. 4. Фрагменты спектров пропускания $Yb_2Ti_2O_7$ при различных температурах.

На рис. 5 приведены спектры люминесценции и возбуждения люминесценции иона Yb^{3+} в образце $Y_2Ti_2O_7$. Спектр *а* получен при возбуждении на длине волны 920 nm. Видно, что при низкой температуре спектр состоит более чем из четырех линий. Интерпре-

тация спектра (выделение бесфононных линий) осложнена двумя обстоятельствами: наличием линий иттербия, входящего в матрицу примеси Y_2O_3 , и сравнимой интенсивностью бесфононных линий и их фононных крыльев. Положения уровней Yb в Y_2O_3 по данным работы [13] приведены на рис. 5, *f*. Линия люминесценции 9700 cm⁻¹ на рис. 5, *a* относится к Y_2O_3 : Yb [13]. Находящуюся недалеко более узкую линию 9630 cm⁻¹ мы приписали иону иттербия в исследуемой матрице $Y_2Ti_2O_7$. Для проверки данного отнесения проведено исследование спектров возбуждения с регистрацией излучения на частоте 9700 (Yb³⁺ в Y_2O_3 , рис. 5, *b*) и 9630 cm⁻¹ (Yb³⁺ в $Y_2Ti_2O_7$, рис. 5, *c*). Линии 10 510

Рис. 5. a — спектр люминесценции Yb³⁺ в образце Y₂Ti₂O₇; *b*, *c* — спектры возбуждения люминесценции с регистрацией излучения на частотах 9700 и 9630 cm⁻¹ соответственно; *d*, *e* — спектры селективного возбуждения люминесценции; *f* — уровни Yb³⁺ в образце Y₂O₃ [13]; *g* — уровни Yb³⁺ в Y₂Ti₂O₇.

		B_{0}^{2}	B_{0}^{4}	B_{0}^{6}	B_{3}^{4}	B_{3}^{6}	B_{6}^{6}	<i>R</i> 1	<i>R</i> 2
$Tb_2Ti_2O_7$		440	2535	850	735	-630	850	0.2194	0.2496
Ho ₂ Ti ₂ O ₇	[5] MO3	550 ± 18 552 532	$2216 \pm 14 \\ 2476 \\ 2475$	701 ± 7 782 805	$675 \pm 9 \\ 700 \\ 716$	$-504 \pm 5 \\ -583 \\ -596$	$819 \pm 9 \\ 845 \\ 838$	0.2187	0.2489
$\mathrm{Er}_{2}\mathrm{Ti}_{2}\mathrm{O}_{7}$		534	2524	748	698	-521	755	0.2182	0.2488
$Tm_2Ti_2O_7$		540	2510	850	670	-505	775	0.2179	0.2474
$\begin{array}{c} Yb_{2}Ti_{2}O_{7} \\ (Y_{2}Ti_{2}O_{7} \colon Yb^{3+}) \end{array}$	[10] MO3	539 590 546	569 2186 2540	1568 822 840	916 611 602	$-510 \\ -498 \\ -462$	790 701 757	0.2172 0.2187	0.2454 0.2477

Таблица 2. Параметры кристаллического поля B_p^k (cm⁻¹) и длины связей (nm) между РЗ и ближайшими ионами кислорода ($R(\text{RE-O1}) = R_1, R(\text{RE-O2}) = R_2$) в РЗ титанатах $R_2\text{Ti}_2\text{O}_7$

и $11030\,\mathrm{cm}^{-1}$ на рис. 5, b соответствуют данным работы [13] и подтверждают наше отнесение. Оставшиеся узкие линии на рис. 5, b можно объяснить тем, что излучение на частоте 9700 cm⁻¹ может также принадлежать фононному крылу от линии 9630 cm⁻¹ для Yb^{3+} в $Y_2Ti_2O_7$. Спектр на рис. 5, *с* мы интерпретируем как спектр, состоящий из трех бесфононных линий (помечены стрелками), каждая из которых окружена фононными крыльями со стоксовой и антистоксовой стороны, причем наиболее интенсивный пик фононного крыла имеет сдвиг 52 cm⁻¹, такой же как и в спектрах пропускания. Полученные из спектра с позиции штарковских подуровней мультиплета ${}^{2}F_{5/2}$ иона иттербия в титанате приведены в табл. 1. Чтобы получить спектр люминесценции иттербия в Y₂Ti₂O₇, мы провели измерение спектров люминесценции с селективным возбуждением на длинах волн 967 nm (рис. 5, d, возбуждение в фононное крыло с более существенной отстройкой от уровня иттербия в Y_2O_3) и 972 nm (рис. 5, *e*), что соответствует точному возбуждению в уровень Yb в Y2Ti2O7, но с малой отстройкой от относительно широкого уровня Yb в Y₂O₃. Спектры d и e отличаются незначительно, в них можно выделить четыре линии, соответствующие переходам на четыре штарковских подуровня основного мультиплета (помечены стрелками). Из их положения вычислены значения энергий штарковских подуровней мультиплета ${}^{2}F_{7/2}$, приведенные в табл. 1. Отметим, что для наиболее интенсивных линий явно видны саттелиты $\pm 52 \,\mathrm{cm}^{-1}$.

Таким образом, из анализа спектров пропускания и люминесценции получены экспериментальные значения уровней энергии для иона иттербия соответственно в $Yb_2Ti_2O_7$ и $Y_2Ti_2O_7$. Кроме этого, обнаружено сильное электрон-фононное взаимодействие, которое следует принимать во внимание при анализе спиновой динамики во фрустрированном магнетике $Yb_2Ti_2O_7$.

3. Расчет спектра по теории кристаллического поля

Эффективный гамильтониан РЗ и
она в КП симметрии D_{3d}

$$H_{CF} = B_0^2 C_0^{(2)} + B_0^4 C_0^{(4)} + B_0^6 C_0^{(6)} + B_3^4 (C_3^{(4)} - C_{-3}^{(4)}) + B_3^6 (C_3^{(6)} - C_{-3}^{(6)}) + V_6^6 (C_6^{(6)} + C_6^{(6)})$$
(1)

содержит шесть независимых ненулевых параметров B_q^k ($C_q^{(k)}$ — сферические тензорные операторы). Оценить величины параметров КП можно в рамках модели обменных зарядов (МОЗ) [14]

$$B_{q}^{k} = B_{q}^{(el)k} + B_{q}^{(ex)k}, (2)$$

здесь $B_q^{(el)k}$ — вклад электростатического поля решетки, а $B_q^{(ex)k}$ — вклад обменных зарядов. При расчете $B_q^{(el)k}$ в настоящей работе учитывалось экранирование [15] и пространственное распределение заряда лигандов [16]. Потенциал поля обменных зарядов определяется линейными комбинациями из квадратов интегралов перекрывания S_s , S_σ , S_π волновых 4f-функций РЗ иона и 2s-, 2p-функций ближайших ионов кислорода, которые определяют эффективность "обмена" [14],

$$S_{k}(R_{L}) = G_{s} [S_{s}(R_{L})]^{2} + G_{\sigma} [S_{\sigma}(R_{L})]^{2} + [2 - k(k+1)/12] G_{\pi} [S_{\pi}(R_{L})]^{2}.$$
 (3)

Здесь R_L — расстояние от РЗ иона до лиганда; G_s , G_{σ} , G_{π} — феноменологические параметры МОЗ. Интегралы перекрывания были вычислены с радиальными волновыми функциями из работ [17] (4*f*-функции для РЗ ионов) и [18] (O²⁻). Наличие двух структурных позиций для ионов кислорода О1 и О2 (рис. 2, *a*) приводит к существенно разным параметрам МОЗ: $G_{\sigma} = G_s = G_{\pi} = 13.5$ (O1) и $G_{\sigma} = G_s = G_{\pi}/0.8 = 20$ (O2). Эти значения получены с учетом найденных ранее соотношений между параметрами G_{α} [14,19], а также данных по КП для Ho₂Ti₂O₇ [5] и данных по параметрам МОЗ для Yb³⁺ в Yb₃Al₅O₁₂ [20].

Вычисленные в рамках МОЗ параметры КП далее варьировались, чтобы получить наилучшее совпадение спектра собственных значений оператора (1) с полученными из эксперимента энергетическими уровнями Yb³⁺ в Yb₂Ti₂O₇. Используя результаты расчета для Yb₂Ti₂O₇, мы нашли параметры КП также для кристаллов Tb₂Ti₂O₇, Er₂Ti₂O₇, Ho₂Ti₂O₇ и Tm₂Ti₂O₇. Полученные в результате варьирования параметры КП приведены в табл. 2. Отметим, что получена зависимость, близкая к монотонной, параметров КП от ионного радиуса РЗ иона и расстояний до ближайших лигандов. Вычисленные с этими параметрами уровни энергии и *g*-факторы сравниваются с экспериментальными данными в табл. 1.

Вычисленные волновые функции иона Yb³⁺ в КП были использованы для расчета температурной зависимости градиента электрического поля на ядре ¹⁷²Yb в Yb₂Ti₂O₇, результаты вычислений хорошо согласуются с экспериментальными данными [10]. Вычисленные относительные интенсивности магнитодипольных переходов в спектре пропускания (1:0.171:0.298) неплохо согласуются с экспериментально определенными относительными интегральными интенсивностями бесфононных линий (1:0.09:0.22, рис. 3).

Основные результаты работы сформулируем следующим образом. Из измеренных спектров поглощения $Yb_{2}Ti_{2}O_{7}$ и люминесценции $Y_{2}Ti_{2}O_{7}$: $Yb^{3+}(1\%)$ найдены уровни энергии для электронной конфигурации 4f¹³ иона Yb³⁺ в титанатах со структурой пирохлора. Спектры поглощения и люминесценции состоят из бесфононных линий и сравнимых по интенсивности фононных крыльев, что говорит о сильном электрон-фононном взаимодействии в Yb₂Ti₂O₇. С использованием в вариационной процедуре начальных величин параметров КП, вычисленных в рамках модели обменных зарядов, достигнуто хорошее согласие рассчитанных уровней энергии и g-факторов для ряда титанатов Yb₂Ti₂O₇, Y₂Ti₂O₇: Yb, $Tb_2Ti_2O_7$, $Er_2Ti_2O_7$, $Ho_2Ti_2O_7$ и $Tm_2Ti_2O_7$ с полученными в данной работе и имеющимися в литературе экспериментальными данными.

Список литературы

- [1] O. Knop, F. Brisse, L. Castelliz. Can. J. Chem. 47, 971 (1969).
- [2] S.T. Bramwell, M.J. Harris, B.C. Den Hertog, M.J.P. Gingras, J.S. Gardner, D.F. McMorrow, A.R. Wildes, A.L.O. Cornelius, J.D.M. Champion, R.G. Melko, T. Fennell. Phys. Rev. Lett. 87, 4, 047 205 (2001).
- [3] A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry. Nature 399, 333 (1999).
- [4] M.J.P. Gingras, B.C. Den Hertog, M. Faucher, J.S. Gardner, S.R. Dunsiger, L.J. Chang, B.D. Gaulin, N.P. Raju, J.E. Greedan. Phys. Rev. B 62, 10, 6496 (2000).

- [5] S. Rosenkranz, A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry. J. Appl. Phys. 87, 9, 5914 (2000).
- [6] J.S. Gardner, B.D. Gaulin, A.J. Berlinsky, P. Waldron, S.R. Dunsiger, N.P. Raju, J.E. Greedan. Phys. Rev. B 64, 22, 224 416 (2001).
- [7] J.S. Gardner, S.R. Dunsiger, B.D. Gaulin, M.J.P. Gingras, J.E. Greedan, R.F. Kiefl, M.D. Lumsden, W.A. MacFarlane, N.P. Raju, J.E. Sonier, I./ Swainson, Z. Tun. Phys. Rev. Lett. 82, 5, 1012 (1999).
- [8] J.D.M. Champion, M.J. Harris, P.C.W. Holdsworth, A.S. Wills, G. Balakrishnan, S.T. Bramwell, E. Cizmar, T. Fennell, J.S. Gardner, J. Lago, D.F. McMorrow, M. Orendac, A. Orendacova, D.McK. Paul, R.I. Smith, M.T.F. Telling, A. Wildes. Phys. Rev. B 68, 2, 020 401 (2003).
- [9] A. Sengupta, J. Jana, D. Ghosh. J. Phys. Chem. Solids 60, 331 (1999).
- [10] J.A. Hodges, P. Bonville, A. Forget, M. Rams, K. Krolas, G. Dhalenne, J. Phys.: Condens. Matter 13, 9301 (2001).
- [11] G.H. Dieke. Spectra and Energy Levels of Rare Earth Ions in Crystals. Interscience, N.Y. (1968).
- [12] M.T. Vandemborre, E. Husson, J.P. Chatry, D. Michel. J. Raman Spectr. 14, 2, 63 (1983).
- [13] E. Antic-Fidancev, J. Holsa, M. Lastusaari. J. Phys.: Condens. Matter 15, 863 (2003).
- [14] B.Z. Malkin. In: Spectroscopy of Solids Containing Rare Earth Ions / Eds A.A. Kaplyanskii, R.M. Macfarlane. North-Holland, Amsterdam (1987). Ch. 2.
- [15] R.P. Gupta, S.K. Sen. Phys. Rev. A 7, 3, 850 (1973).
- [16] D. Garcia, M. Faucher. Phys. Rev. B 30, 4, 1703 (1984).
- [17] A.J. Freeman, R.E. Watson. Phys. Rev. 127, 6, 2058 (1962).
- [18] E. Clementi, A.D. McLean. Phys. Rev. 133, 2A, A419 (1964).
- [19] M. Faucher, D. Garcia, C.K. Jørgensen. Chem. Phys. Lett. 129, 387 (1986).
- [20] G.A. Bogomolova, L.A. Bumagina, A.A. Kaminskii, B.Z. Malkin. Sov. Phys. Solid State 19, 1428 (1977).
- [21] R. Siddharthan, B.S. Shastry, A.P. Ramirez, A. Hayashi, R.J. Cava, S. Rosenkranz. Phys. Rev. Lett. 83, 9, 1854 (1999).