01;04 Сила взаимодействия заряженных плоскостей в облаке электронов и в плазме

© С.И. Яковленко

Институт общей физики РАН, Москва

Поступило в Редакцию 18 декабря 2000 г.

Рассмотрено распределение потенциала, напряженности поля и плотности плазмы в случае, когда заряженные плоскости окружены термоэмиссионными электронами, компенсирующими их заряд, или помещены в плазму конечной плотности. Показано, что плоскости, окруженные термоэмиссионными электронами (как и плоскости, помещенные в плазму), расталкиваются за счет электростатических сил. Получено выражение для электростатического давления.

1. Введение

При рассмотрении свойств термоэмиссионной пылевой плазмы [1] некоторый интерес представляет плоская модель пылевых частиц, поскольку для нее возможно общее решение уравнения Пуассона–Больцмана в квадратурах. Обычно (см., например, [2,3]) рассматривают случай, когда положительные заряды в плазме полностью сосредоточены на пылинках, окруженных облаком термоэлектронов. Однако интерес представляет и ситуация, когда имеет место дополнительная ионизация газа, в котором находятся пылинки. Примером может служить как пылевая плазма в электрическом разряде, так и ядерно возбуждаемая пылевая плазма [4,5]. Рассмотрению взаимодействия плоскостей в этих случаях посвящена данная работа.

2. Постановка задачи

Уравнение Пуассона-Больцмана. Здесь рассматривается ситуация, когда электронный газ, окружающий заряженные частицы, формируется за счет эмиссии электронов из пылинок, имеющих достаточно

83

высокую температуру *T*. Кроме того, пылинки находятся в частично ионизованном газе. Для нахождения распределения по пространству потенциала ϕ , напряженности поля $\mathbf{F} = -\nabla \phi$ и плотности заряда $\rho = e(N_i - N_e)$ следует решить уравнение Пуассона $\nabla \mathbf{F} = 4\pi\rho$. В этом уравнении плотности ионов N_i электронов N_e определяются распределением Больцмана $N_i = N_{i0} \exp(-e\phi/T)$, $N_e = N_{e0} \exp(e\phi/T)$, где N_{i0} , N_{e0} — плотности ионов и электронов в тех точках, где потенциал равен нулю; ∇ — гамильтонов векторный оператор.

Итак, уравнение Пуассона-Больцмана имеет вид:

$$\Delta \phi = 4\pi e \left(N_{e0} \exp(e\phi/T) - N_{i0} \exp(-e\phi/T) \right), \tag{1}$$

где $\Delta = \nabla^2$ — оператор Лапласа; температура частиц и плазмы считается одинаковой.

Безразмерные величины. Будем измерять длину в единицах $d = 8\pi e^2/T$. Введем безразмерные величины — потенциал φ , напряженность поля **E** и плотность электронов n_e — с помощью соотношений:

$$\varphi = \phi e/T; \quad \mathbf{E} = \mathbf{F} e d/T; \quad n_e = (8\pi e^2/T)^3 N_e.$$
 (2)

Для безразмерных величин уравнение (1) сводится к следующему уравнению для безразмерного потенциала φ :

$$\Delta \varphi = (1/2) \big(\exp(\varphi) - \delta \exp(-\varphi) \big), \tag{3}$$

где $\delta = N_{i0}/N_{e0}$ — параметр, характеризующий дополнительную ионизацию. При этом ($\nabla \mathbf{E}$) = $-(1/2)(\exp(\varphi) - \delta \exp(-\varphi))$, $\mathbf{E} = -\nabla \varphi$. В силу квазинейтральности плазмы: $0 \leq \delta \leq 1$.

В плоском случае уравнение (3) имеет вид:

$$d^{2}\varphi/dx^{2} = (1/2) (\exp(\varphi) - \delta \exp(-\varphi)),$$

$$E = -d\varphi/dx, \qquad n_{e} = \exp(\varphi).$$
(4)

Здесь *х* — расстояние до заряженной плоскости.

Граничные условия. В качестве первого граничного условия естественно задавать плотность положительного заряда на заряженной поверхности σ . Этим задается значение напряженности поля на заряженной поверхности F_0 . Оно соответствует напряженности поля в плоском конденсаторе: $F_0 = 4\pi\sigma$ или $E_0 = \sigma d^2/2e$.

Второе граничное условие выберем в некоторой точке a_0 , соответствующей нулевой напряженности поля, где заряд поверхности полностью компенсируется зарядом слоя электронов: $E(a_0) = 0$.

3. Распределение поля и потенциала

Общее решение. Наиболее полное рассмотрение уравнения (4) случая $\delta = 1 \text{ cm } \text{ b } [6]$, случай $\delta = 0$ рассмотрен в [3]. Здесь анализируется общая ситуация.

Понизим порядок уравнения Пуассона–Больцмана, рассматривая напряженность поля как функцию потенциала:

$$EdE/d\varphi = (1/2)(\exp(\varphi) - \delta \exp(-\varphi)).$$

Первое интегрирование дает связь напряженности поля с потенциалом:

$$E = \left(\exp(\varphi) + \delta \exp(-\varphi) - \exp(\varphi_1) - \delta \exp(-\varphi_1)\right)^{1/2}.$$
 (5a)

Здесь φ_1 —значение потенциала в точке a_0 , где напряженность поля равна нулю.

Второе интегрирование дает связь потенциала φ с координатой *х*:

$$x = \int_{\varphi}^{\varphi_0} \frac{dy}{\sqrt{\exp(y) + \delta \exp(-y) - \exp(\varphi_1) - \delta \exp(-\varphi_1)}}.$$
 (56)

Здесь $\varphi_0 = \varphi(0)$ — значение потенциала на заряженной плоскости. Оно связано с задаваемой на границе напряженностью поля E_0 соотношением (5а) при $\varphi = \varphi_0$. Связь φ_1 с φ_0 (и соответственно с E_0) следует из соотношения (5б) при $x(\varphi_1) = a_0$. Формулы (5) являются общим решением плоской задачи в квадратурах.

Уединенная заряженная плоскость. При рассмотрении уединенной плоскости $(a_0 \to \infty)$ в полупространстве, где плотность положительных зарядов равна нулю $(\delta = 0)$, когда термоэмиссионные электроны полностью экранируют положительный заряд плоскости, полагая в (56) $\delta = 0$, $\varphi_1 = -\infty$, имеем в результате интегрирования:

$$\varphi(x) = 2\ln[2E_0/(xE_0+2)];$$

$$E(x) = 2E_0/(xE_0+2), \qquad n_e(x) = [2E_0/(xE_0+2)]^2. \tag{6}$$

Рассмотрению уединенной заряженной плоскости $(a_0 \to \infty)$ в полупространстве, заполненном плазмой, соответствует случай $\delta = 1$. Дело

Рис. 1. Геометрия задачи о двух пластинах, окруженных облаком электронов или помещенных в плазму: *1* — ось симметрии; *2* — пластинка под заданным потенциалом.

в том, что плотность положительных зарядов в плоском плазменном слое на единицу поверхности будет бесконечной для слоя бесконечной толщины (при конечной объемной плотности заряда). Соответственно на бесконечно удаленном расстоянии можно пренебречь термоэмиссионными электронами. Полагая поле и потенциал на бесконечном расстоянии от заряженной плоскости равными нулю (соответственно $\varphi_1 = 0$), проводя интегрирование и разрешая получившееся выражение относительно φ , приходим к известному результату (см., например, [6,7]):

$$arphi(x, arphi_0) = 2 \ln \left(\frac{1 + \exp(-x) \cdot \tanh(arphi_0/4)}{1 - \exp(-x) \cdot \tanh(arphi_0/4)}
ight),$$
 $E = 2 \cdot \operatorname{sh}(arphi/2), \qquad n_e(x, arphi_0) = \left(\frac{1 + \exp(-x) \cdot \tanh(arphi_0/4)}{1 - \exp(-x) \cdot \tanh(arphi_0/4)}
ight)^2,$
где $arphi_0 = 2\operatorname{arcsh}(E_0/2).$

В случае $\delta = 0$ интегрирование уравнения (56), дает:

$$\varphi(x) = \ln(E^2 + E_1^2), \ E(x) = E_1 \cdot tg[(a_0 - x)E_1/2)], \ n_e(x) = (E^2 + E_1^2).$$
 (7)

Величина $E_1 \equiv \exp(\varphi_1/2)$ (и соответственно φ_1) связана с a_0 простым соотношением:

$$a_0 = (2/E_1) \cdot \operatorname{arctg}(E_0/E_1).$$
 (8)

Для $\delta \neq 0$ связь φ_1 с задаваемыми величинами a_0, φ_0 и δ определяется намного сложнее:

$$a_{0} = \int_{\varphi_{1}}^{\varphi_{0}} \frac{dy}{\sqrt{\exp(y) + \delta \exp(-y) - \exp(\varphi_{1}) - \delta \exp(-\varphi_{1})}}$$

= $\frac{1}{\delta^{1/4}} \int_{\varphi_{1}+2\ln(1/\delta)}^{\varphi_{0}+2\ln(1/\delta)} \frac{dy}{\sqrt{2(\operatorname{ch}(y) - \operatorname{ch}(\varphi_{1}+2\ln(1/\delta))}}$
= $\frac{1}{\delta^{1/4}} \int_{\varphi_{1}+2\ln(1/\delta)}^{\varphi_{0}+2\ln(1/\delta)} \frac{(1/2)dy}{\sqrt{\operatorname{ch}^{2}(y/2) - \operatorname{ch}^{2}(y_{1}/2)}}$
= $\frac{k}{\delta^{1/4}} \int_{u(\varphi_{0}+2\ln(1/\delta))}^{u(\varphi_{1}+2\ln(1/\delta))} \frac{dz}{\sqrt{(1-z^{2})(1-k^{2}z^{2})}} = \frac{k}{\delta^{1/4}} F\left(k, u(\varphi_{0}+2\ln(1/\delta))\right).$

Или

$$a_0 = \delta^{-1/4} k \cdot F(k, u(\varphi_0 + 2\ln(1/\delta))),$$
(9)

где

$$u(\varphi) = 1/(k \cdot \operatorname{ch}(\varphi)), \quad k = 1/\operatorname{ch}(\varphi_1 + 2\ln(1/\delta)),$$
$$F(k, u) = \int_{u}^{1} \frac{dz}{\sqrt{(1 - z^2)(1 - k^2 z^2)}}.$$

Рис. 2. Зависимость потенциала (*a*) и напряженности поля (*b*) от координаты в задаче о двух пластинах при $\delta = 0$, $a_0 = 4$, $\varphi_0 = 5$.

Рис. 3. То же, что на рис. 3 при $\delta = 1$, $a_0 = 4$, $\varphi_0 = 5$.

Письма в ЖТФ, 2001, том 27, вып. 9

При этом неявная зависимость потенциала от координаты определяется выражением:

$$x = a_0 - \delta^{-1/4} k \cdot F(k, u(\varphi + 2\ln(1/\delta))).$$
 (10)

Интересен случай большого положительного потенциала $\varphi_0 \gg 1$. При $\varphi_0 \rightarrow \infty$ имеем [6]: $a_0 = \delta^{-1/4} k \cdot K(k)$, где $K(k) \equiv F(k, 0)$ — полный эллиптический интеграл в нормальной форме.

Распределения потенциала для ситуации (рис. 1), когда две проводящие плоскости под одинаковым потенциалом $\varphi = \varphi_0$ находятся в электронном облаке, компенсирующем их заряд ($\delta = 0$), и в неограниченной плазме ($\delta = 1$) приведены на рис. 2, 3.

4. Расталкивание заряженных плоскостей

Электростатическое давление. Напряженность поля на поверхности плоскости слева $F_{01} = (T/ed) \cdot E_{01}$ со стороны неограниченного полупространства и напряженность поля справа $F_{02} = (T/ed) \cdot E_{02}$ со стороны, ограниченной другой плоскостью (рис. 1), отличаются. При этом возникает электростатическое давление на плоскость:

$$P = (1/8\pi)(F_{01}^2 - F_{02}^2) = (1/8\pi)(T/ed)^2 p = T(T/8\pi e^2)^3 p,$$

где $p = (E_{01}^2 - E_{02}^2)$ — безразмерное давление. Когда $E_{01} > E_{02}$, имеет место отталкивание плоскостей, при $E_{01} > E_{02}$ плоскости притягиваются.

Термоэмиссионная плазма. В случае термоэмиссионной плазмы $(\delta = 0)$ имеем (см. также [3]):

$$E_{01}^2 = n_{e0}, \qquad E_{02}^2 = n_{e0} - E_{11}^2$$

Здесь $n_{e0} = C(b)\vartheta^{-3/2}\exp(-1/\vartheta)$ — безразмерная плотность термоэмиссионных электронов вблизи нагретой поверхности, вытекающая из формулы Ричардсона–Дешмана; $C(b) = 2(m_e/2\pi\hbar^2)^{3/2}(8\pi e^2)^3/b^{3/2} = 2.9 \cdot 10^5 \cdot (\text{eV/b})^{3/2}; \vartheta = T/b$ — приведенная температура; b — работа выхода электронов со стенки, \hbar — постоянная Планка.

Соответственно для безразмерного давления получаем:

$$p = E_{01}^2 - E_{02}^2 = E_1^2 \ge 0.$$

Итак, сила, направленная в сторону неограниченного полупространства в рассматриваемой задаче, всегда больше, чем сила, направленная в сторону пространства, ограниченного другой плоскостью. Иначе говоря, плоскости расталкиваются. Это обусловлено отмеченным в [3] эффектом выдавливания электронов из пространства между плоскостями на электроды.

Величина $E_1 \equiv \exp(\varphi_1/2)$ связана с половиной расстояния между плоскостями a_0 и потенциалом на электроде φ_0 трансцендентным соотношением (6), откуда следует связь давления с a_0 :

$$a_0 = \frac{2}{E_1} \operatorname{arctg}\left(\frac{E_{02}}{E_1}\right) = \frac{2}{E_1} \operatorname{arctg}\left(\frac{\sqrt{E_{01}^2 - E_1^2}}{E_1}\right)$$

ИЛИ

$$a_0 = \frac{2}{\sqrt{p}} \operatorname{arctg}\left(\sqrt{\frac{n_{e0} - p}{p}}\right). \tag{11}$$

Модуль давления падает пропорционально квадрату расстояния между плоскостями при больших расстояниях и стремится к конечному

Рис. 4. Зависимость электростатического давления p от половины расстояния между плоскостями a_0 при $\delta = 0$; $n_{e0} = 10$ — сплошная кривая, $n_{e0} = 1$ — пунктир.

Рис. 5. Зависимость электростатического давления p от половины расстояния между плоскостями a_0 при $\delta = 1$; $\varphi_0 \to \infty$, $n_{e0} \to \infty$ — сплошная кривая, $\varphi_0 = 7$, $n_{e0} = 10^3$ — пунктир; $\varphi_0 = 1$, $n_{e0} = 2.7$ — штрихи; $\varphi_0 = 0.1$, $n_{e0} = 0.1$ — штрихпунктир.

пределу при малых расстояниях. Иначе говоря: $p = (\pi/a_0)^2$ при $a_0 \gg 1$ (наиболее интересный случай) и $p = n_{e0}$ при $a_0 \ll 1$ (рис. 4).

Заряженные плоскости в плазме. Рассмотрим ситуацию, когда плоскости находятся в неограниченной плазме ($\delta = 1$). Из (5а) имеем:

$$E_{01}^2 = 4 \cdot \mathrm{sh}^2(\varphi_0/2), \qquad E_{02}^2 = 4 \cdot \left(\mathrm{sh}^2(\varphi_0/2) - \mathrm{sh}^2(\varphi_1/2)\right),$$

откуда следует

$$p = (E_{01}^2 - E_{02}^2) = 4 \cdot \operatorname{ch}(\varphi_1).$$
(12)

В случае $\delta = 1$ плоскости также отталкиваются [6]. При этом согласно (9):

$$a_0(\varphi_0,\varphi_1) = k(\varphi_1) \cdot F(k(\varphi_1), u(k(\varphi_1),\varphi_0)), \qquad (13)$$

где $u(\varphi) = 1/(k \cdot ch(\varphi)), k = 1/ch(\varphi_1)$. Зависимость φ_0 от n_{e0} определяется выражением:

$$n_{e0} = \left(\frac{1 + \tanh(\varphi_0/4)}{1 - \tanh(\varphi_0/4)}\right)^2 = \exp(\varphi_0)$$

Соответственно $\varphi_0 = \ln(n_{e0}).$

Выражения (11)–(12) параметрически задают зависимость давления от расстояния между плоскостями и от n_{e0} (рис. 5).

5. Выводы

Итак, электростатическое взаимодействие между плоскостями, как окруженными облаком электронов, так и помещенными в плазму, приводит к расталкиванию этих плоскостей. В то же время численные расчеты [8] показывают, что в случае сферических частиц имеет место притяжение. Возможно, это связано со следующими двумя обстоятельствами. Во-первых, в плоской задаче не учитывается перетекание электронов с периферии в центральную область на оси, соединяющей пылинки. Во-вторых, сила взаимодействия заряженных плоскостей (в отсутствие зарядов вокруг них) не зависит от расстояния между плоскостями, в то время как сила взаимодействия заряженных сфер обратно пропорциональна квадрату расстояния между ними. Поэтому электроны, скопившиеся примерно на середине расстояния между пылинками, в случае взаимодействия сферических пылинок вносят больший вклад, чем в случае плоскостей. Во всяком случае вопрос о взаимодействии пылинок конечных размеров в облаке электронов и в плазме требует дополнительного исследования.

Список литературы

- Фортов В.Е., Нефедов А.П., Петров О.Ф., Самарян А.А., Чернышев А.В. // ЖЭТФ. 1997. Т. 111. № 2. С. 467–477.
- [2] Ткачев А.Н., Яковленко С.И. // ЖТФ. 1999. Т. 69. № 1. С. 53–57.
- [3] Яковленко С.И. // Письма в ЖТФ. 2000. Т. 26. В. 8. С. 47-55.
- [4] Фортов В.Е., Владимиров В.И., Депутатова Л.В., Молотков В.И., Нефедов А.П., Рыков В.А., Торчинский В.М., Худяков А.В. // ДАН. 1999.
 Т. 336. № 2. С. 184–187.
- [5] *Яковленко С.И.* // Краткие сообщения по физике ФИАН. 2001 (направлено в печать).
- [6] Derjagin B., Landau L. // Acta Physicochimica U.R.S.S. V. XIV. N 6. P. 633.
- [7] Сивухин Д.В. Вопросы теории плазмы. Вып. 4 / Под ред. М.А. Леонтовича. М.: Госатомиздат, 1964. С. 81–187.
- [8] Яковленко С.И. // Письма в ЖТФ. 1999. Т. 25. № 16. С. 83-89.