05;09

Стохастическая неустойчивость траекторий поверхностных магнитостатических волн в ферритовой пленке, намагниченной модулированным полем с профилем "вала"

© В.И. Зубков, В.И. Щеглов

Институт радиотехники и электроники РАН, Фрязино

Поступило в Редакцию 27 октября 2000 г.

Описан неисследованный ранее процесс стохастизации, возникающий при распространении поверхностных магнитостатических волн (ПМСВ) в ферритовых пленках, намагниченных периодически неоднородным полем с профилем в виде "вала". Установлены вид траектории ПМСВ и фазовый портрет процесса. Показано, что траектория ПМСВ становится неустойчивой и обрывается, если угол распространения ПМСВ становится больше угла отсечки.

В связи с разработкой систем аналоговой обработки информации [1] становится актуальным исследование распространения поверхностных магнитостатических волн (ПМСВ) в периодически меняющихся магнитных полях [2-6], в частности в полях, периодически зависящих от координат [5,6]. Одновременно в физике растет интерес к процессам, проявляющим стохастические свойства [7]. Примером являются хаотические колебания детерминированной системы, возникающие при периодическом воздействии, заключающемся в изменении параметров системы во времени. Однако такие процессы должны быть возможны и при изменении параметров системы в зависимости от координат. Ниже, как пример такой возможности, приведены результаты изучения стохастических свойств ПМСВ, распространяющихся в ферритовой пленке (ФП), намагниченной неоднородным полем с профилем в виде "вала", характеристики которого периодически меняются в пространстве. Возможность реализовать в эксперименте такой процесс следует из [5,6].

90

Из [8,9] известно, что траектории ПМСВ в ФП, намагниченных неоднородным полем H_g типа "вала", представляют собой пространственный колебательный процесс относительно координаты, параллельной оси "вала". Пусть координатная плоскость *OYZ* совпадает с плоскостью ФП, а ось 0x ей перпендикулярна.

Рассмотрим ПМСВ с частотой $\omega = 2\pi f$, волновой вектор **k** и групповая скорость **v** которой направлены под углами φ и ψ к оси 0у. ПМСВ распространяются в плоскости ФП внутри выделенного по оси 0у канала по траекториям, близким к синусоидальным "пилам" [8,9], если угол φ в точке возбуждения φ_0 меньше угла отсечки φ_c . Исследуем трансформацию траекторий ПМСВ при периодическом воздействии, состоящем в модуляции подмагничивающего поля с профилем "вала". Поле H_g вдоль оси 0z в отсутствие модуляции имеет вид

$$H_g = 4\pi M_0 \left[T - F(z - S)^2 \right],$$
 (1)

где M_0 — намагниченность насыщения $\Phi\Pi$, T, F, S — параметры поля с профилем "вала", из которых первый характеризует его высоту, второй — крутизну склонов и третий — сдвиг вершины вдоль 0_Z .

Пусть модуляция поля Н_g происходит по закону

$$R = R_0 + R_m = R_0 + R_{m0}\sin(2\pi R_r y), \qquad (2)$$

где R = T, F, S, а R_0 — постоянная и R_m — переменная части параметра, R_{m0} — амплитуда и R_r — частота модуляции. ПМСВ, распространяющиеся в таком поле H_g , испытывают периодическое воздействие, приходящееся на разные участки траекторий. При этом вместо устойчивого синусоидального характера траектория ПМСВ становится неустойчивой, что проявляется в хаотических скачках амплитуды, частоты и фазы. Если при скачке фазы угол φ превышает угол отсечки φ_c , то траектория обрывается. Явления стохастизации проявляются тем сильнее, чем больше глубина модуляции.

Рассмотрим, например, траектории ПМСВ z(y) в поле H_g с профилем "вала", у которого модулируется только крутизна склонов F, изменяющаяся по закону, описываемому формулой (2), где $F_0 = 4 \text{ cm}^{-2}$, $F_{m0} = 2 \text{ cm}^{-2}$, $F_r = 3.57 \text{ cm}^{-1}$, а T = 0.25 и S = 0 cm. Будем считать, что ФП является пленкой из железоиттриевого граната (ЖИГ), которая обычно используется в экспериментах [1,5,6,8]. При расчетах толщина пленки ЖИГ взята равной 15 μ m, а ее намагниченность насыщения

Письма в ЖТФ, 2001, том 27, вып. 8

Рис. 1. Траектории ПМСВ и их свойства.

Письма в ЖТФ, 2001, том 27, вып. 8

Рис. 2. Зависимость длины траекторий от частоты модуляции.

 $4\pi M_0 = 1750$ Gs. ПМСВ возбуждаются в точке y = 0 cm, z = 0 cm под углом $\varphi_0 = 30^\circ$.

На рис. 1 показаны: изменение модулированной части поля F_m , траектории ПМСВ z(y), их производные dz/dy, а также фазовые портреты колебаний (зависимости dz/dy от z). В отсутствие модуляции (колонка a на рис. 1) траектория ПМСВ и ее производная имеют строго периодический, близкий к синусоидальному характер, а фазовая траектория описывает один и тот же цикл. При наличии модуляции (колонка b) амплитуда траектории ПМСВ и ее производной испытывают хаотические скачки, а фазовая траектория каждый новый оборот совершает по-иному и фазовый портрет размазывается. При y = 8.687 ст траектория ПМСВ обрывается.

На рис. 2 показана максимальная длина траекторий ПМСВ y_{max} для разных частот модуляции F_r . При этом $N_f = F_r/P_{m0}$, где

Письма в ЖТФ, 2001, том 27, вып. 8

 $P_{m0} = 2.1 \text{ cm}^{-1}$ — пространственная частота траекторий ПМСВ в отсутствие модуляции. Сильная изрезанность зависимости y_{max} от F_r отражает пространственный синхронизм траекторий ПМСВ и поля H_g . Величина y_{max} минимальна, когда период ПМСВ равен целому числу периодов модуляции, причем наиболее глубокие минимумы соответствуют их четному числу (2, 4, 6, 8). Так, при $N_f = 1$ длина траектории ПМСВ равна 7.5 сm, при $N_f = 2 - 1.5$ сm, при $N_f = 3 - 6.8$ cm, при $N_f = 4 - 1.2$ сm, при $N_f = 5 - 12.2$ сm, при $N_f = 6 - 4$ cm. В промежутках между этими значениями длина траекторий ПМСВ может достигать ≈ 20 сm. В этих случаях траектория ПМСВ пересекает вершину "вала" всего черыре-пять раз. При $N_f > 8$ вплоть до $N_f = 15$ минимумы y_{max} обнаружены не были.

Описанная стохастическая неустойчивость траекторий ПМСВ наблюдается также при модуляции высоты и сдвига вершины "вала".

Список литературы

- [1] Adam J.D. // Proc. of IEEE. 1988. V. 76. N 2. P. 159-170.
- [2] Преображенский В.Л., Фетисов Ю.К. // Изв. вузов. Физика. 1988. Т. 31. № 11. С. 54–66.
- [3] Коровкин В.Ю. // ЖТФ. 1993. Т. 63. № 9. С. 115–121.
- [4] Фетисов Ю.К. // ЖТФ. 1994. Т. 64. № 8. С. 76–82.
- [5] Вороненко А.В., Герус С.В., Харитонов В.Д. // Изв. вузов. Физика. 1988. Т. 31. № 11. С. 76-85.
- [6] Анненков А.Ю., Герус С.В., Сотников И.В. // РиЭ. 1992. Т. 37. № 8. С. 1371– 1380.
- [7] Анищенко В.С., Нейман А.Б., Мосс Ф., Шиманский-Гайер Л. // УФН. 1999.
 Т. 169. № 1. С. 7–38.
- [8] Зубков В.И., Локк Э.К., Щеглов В.И. // РиЭ. 1990. Т. 35. № 8. С. 1617–1623.
- [9] Вашковский А.В., Зубков В.И., Локк Э.Г., Щеглов В.И. // РиЭ. 1995. Т. 40. № 2. С. 313–321.

Письма в ЖТФ, 2001, том 27, вып. 8