06;07;12

О связи спектров оптического пропускания с фотолюминесцентными характеристиками в пористом кремнии

© А.А. Сарен, С.Н. Кузнецов, В.Б. Пикулев, Ю.Е. Гардин, В.А. Гуртов

Петрозаводский государственный университет E-mail: saren@mainpgu.karelia.ru

Поступило в Редакцию 27 октября 2000 г.

Исследовались характеристики свободных пленок пористого кремния по спектрам пропускания, фотолюминесценции и возбуждения фотолюминесценции. Спектры оптического пропускания не имеют особенностей вблизи полос фотолюминесценции и порогов фотовозбуждения, что свидетельствует о превалирующей роли нелюминесцирующих фрагментов пористого кремния в процессе поглощения света. Данное наблюдение не позволяет использовать спектры оптического пропускания как источник информации о параметрах энергетического спектра носителей заряда в люминесцирующих кремниевых нанокристаллитах. Эти параметры могут быть грубо определены из спектра возбуждения фотолюминесценции.

Экспериментальные данные по оптическому пропусканию пленок пористого кремния (ПК) до настоящего времени используются в качестве аргументов как в защиту квантово-размерной модели [1] свечения ПК, так и против нее. В ряде работ положение "границы" оптического пропускания прямо связывается с шириной запрещенной зоны люминесцирующих нанокристаллитов в ПК [2–4]. Эти эксперименты свидетельствуют о коротковолновом сдвиге спектров оптического пропускания ПК при увеличении пористости слоя, что интерпретируется как увеличение ширины запрещенной зоны кремниевых нанокристаллитов при уменьшении их размера. В то же время имеются наблюдения [5] существенного сдвига "границы" оптического пропускания пленок ПК при неизменном положении фотолюминесцентного (ФЛ) спектра, что противоречит приведенному выше объяснению.

47

Данная работа призвана показать, с одной стороны, неинформативность спектров оптического поглощения пленок ПК и, с другой, важность измерения спектров возбуждения ФЛ для выяснения механизма поглощения.

В работе исследовались свободные пленки ПК, полученные методом анодного травления пластин кремния *p*-типа, с удельным сопротивлением $1\Omega \cdot \text{сm}$ и ориентацией (100). Электролитом служил раствор 49%-ной плавиковой кислоты в изопропиловом спирте (1:1 по объему). Травление проводилось при постоянном токе плотностью 25 mA/cm² в течение 5 min, при подсветке галогеновой лампой. Отделение пленок осуществлялось пропусканием кратковременного (~ 5 s) импульса тока, на порядок большего, чем ток формовки, в разбавленном формовочном электролите. Сформированные пленки имели толщину ~ 10 μ m при пористости ~ 70%. Свободные пленки переносились на полированные пластины из фтористого магния. Перенос пленки вынужденно проходил с переворотом "лицом" вниз, так что фронтальная сторона пленки оказывалась обращенной к подложке. Высокая прозрачность подложки обеспечивала возбуждение и измерение люминесценции обеих сторон пленки ПК.

При измерении спектров ФЛ использовалось возбуждение в узкой полосе УФ квантов вблизи 4 eV при мощности $\sim 1 \text{ mW/cm}^2$. Спектры корректировались на чувствительность спектрометрической системы. Спектры фотовозбуждения (ФВ) снимались с помощью оригинальной установки, описанной в работе [6]. Регистрация люминесцентного сигнала проводилась в полосе длин волн 600–850 nm неселективным фотоприемником.

Спектры оптического поглощения были получены из измерений коэффициента пропускания света при помощи двухлучевого спектрофотометра SPECORD M-400. В канал сравнения помещалась пластина из фтористого магния без пленки.

На рис. 1 представлены нормированные спектры ФЛ до отделения пленки и спектры от обеих сторон пленки после отделения от Si подложки. Спектр ПК на подложке и спектр фронтальной стороны пленки хорошо совпадают, свидетельствуя о сохранении свойств объекта при отделении. Спектр обратной стороны смещен в длинноволновую область, что свидетельствует о поперечной неоднородности люминесцентных свойств пленки. В рамках квантово-размерной модели [1] такой сдвиг обусловлен наличием градиента пористости в поперечном напра-

Рис. 1. Фотолюминесцентные спектры ПК на подложке (1), фронтальной (2) и обратной (3) сторон пленки после отделения.

влении: характеристический размер Si кристаллитов увеличивается от фронтальной стороны пленки к обратной.

Спектры фотовозбуждения фронтальной и обратной сторон пленки ПК приведены на рис. 2. Из рисунка видно, что спектры ФВ имеют хорошо выраженный участок линейного роста интенсивности сигнала в области малой энергии квантов возбуждения. Предполагая, что зависимость на низкоэнергетическом участке (недоступном в нашем исследовании) остается линейной, можно определить пороговую энергию процесса фотовозбуждения $E_{\rm TH}$ экстраполяцией к нулевому сигналу. Эти пороги составили 2.0 \pm 0.05 eV для фронтальной и 1.9 \pm 0.05 eV для обратной сторон пленки.

На рис. 3 представлена зависимость логарифма оптической плотности ПК (пропорциональной коэффициенту поглощения α) от энергии фотонов. На этом же рисунке приведен результат линейной аппроксимации зависимости методом наименьших квадратов. Хорошая точность аппроксимации позволяет считать зависимость $\alpha(h\nu)$ экспоненциальной в исследованном интервале энергии квантов, что согласуется с данными

Рис. 2. Исходные спектры фотовозбуждения обеих сторон отделенной пленки ПК: фронтальной (1) и обратной (2). Сплошные линии — линейная аппроксимация начальных участков по методу наименьших квадратов. Значения пороговой энергии возбуждения $E_{\rm TH}$ определены по точкам пересечения аппроксимирующих прямых с осью абсцисс.

работы [7]. Также на рис. 3 показаны спектры $\Phi \Pi$ и отмечены пороговые энергии фотовозбуждения $E_{\rm TH}$ для обеих сторон пленки. Важно отметить, что спектр поглощения не имеет особенностей в окрестности порога ΦB и слабо изменяется в пределах люминесцентной полосы. Интересно, что в аморфном гидрогенизированном кремнии *a*-Si:H $\Phi \Pi$ полоса также расположена в энергетическом интервале, в котором спектр $\alpha(h\nu)$ экспоненциальный [8].

Обсудим полученные данные. Согласно определению, интенсивность сигнала ФВ пропорциональна $\alpha(h\nu)$ и квантовому выходу люминесценции $\eta(h\nu)$. Очевидно, что слабая зависимость поглощения (рис. 3) не способна сама обеспечить резкий подъем в спектре ФВ (рис. 2). Однако теория квантового связывания в ПК [9] не предсказывает

Рис. 3. Зависимость натурального логарифма оптической плотности пленки ПК от энергии фотонов. Приведены также исходные спектры фотолюминесценции фронтальной (1) и обратной (2) сторон пленки. Стрелками указаны пороговые энергии возбуждения, определенные из спектров фотовозбуждения.

сильной зависимости $\eta(h\nu)$ в этом интервале энергий. Для разрешения этого противоречия разумно предположить, что в пористом кремнии присутствуют два различных компонента — люминесцирующий и нелюминесцирующий. Относительный объем второго компонента существенно больше, он и обусловливает форму спектра оптического поглощения ПК. Выше отмечено, что протяженный экспоненциальный "хвост" в спектре поглощения характерен для *a*-Si:Н. Картина электронной дифракции в ПК показывает наличие интенсивного гало от аморфизированной фазы [10]. Высокая концентрация гидридных связей Si–H_n в эффективно люминесцирующем ПК следует из данных ИК-спектроскопии [11]. В сумме указанные факты позволяют сделать вывод о том, что *a*-Si:Н является вероятным кандидатом на роль основного компонента ПК, определяющего оптическое поглощение, но не люминесцентные свойства.

Фрагменты, способные к люминесценции, мы связываем с наноразмерными кристаллитами кремния, помещенными в матрицу ПК. Поглощение возбуждающего света в этих фрагментах порождает ФЛ отклик, регистрируемый в спектре ФВ. Какую информацию заключает в себе порог фотовозбуждения *E*_{TH}? Очевидно, эта величина получает однозначную трактовку при выполнении условий $\eta(h\nu) = \text{const}$ и $d\alpha_{eff} \ll 1$, где d — толщина и α_{eff} — эффективный коэффициент поглощения слоя ПК. Тогда E_{TH} дает величину пороговой энергии генерации электрон-дырочных пар, т.е. оптическую ширину запрещенной зоны Si нанокристаллитов. В нашем случае $d\alpha_{eff} \sim 1$ в окрестности $h\nu \sim 2 \,\mathrm{eV}$, поэтому экспериментальный порог E_{TH} в спектрах ФВ является оценочной величиной запрещенной зоны. Сказанное объясняет факт значительного превышения Е_{ТН} над минимальной энергией квантов, наблюдаемой в спектре ФЛ (см. рис. 3). Проведенное совместное исследование спектров пропускания ФЛ и ФВ на отделенных пленках ПК свидетельствует о том, что характеристики люминесцентного процесса не имеют однозначной связи со спектром оптического пропускания. Приближенная характеризация зонной структуры люминесцирующих Si нанокристаллитов в ПК возможна с помощью исследования спектра возбуждения фотолюминесценции.

Список литературы

- [1] Canham L.T. // Appl. Phys. Lett. 1990. V. 57. P. 1046.
- [2] Sagnez I., Halimaoui A. et al. // Appl. Phys. Lett. 1993. V. 62. P. 1155.
- [3] Grivickas V., Basmaji P. // Thin Solid Films. 1993. V. 235. P. 234.
- [4] Chan M.H., So S.K., Cheak K.W. // J. Appl. Phys. 1996. V. 79. P. 3273.
- [5] Kanemitsu Y., Uto H. et al. // Phys. Rev. B. 1993. V. 48. P. 2827.
- [6] Pikulev V.B., Kuznetsov S.N. et al. // J. Porous Materials. 2000. V. 7. P. 253.
- [7] Xie Y.H., Hybersten M.S. et al. // Phys. Rev. B. 1994. V. 49. P. 5386.
- [8] Street R.A. // Phil. Mag. B. 1978. V. 37. P. 35.
- [9] Delerue C., Allan G., Lannoo M. // Phys. Rev. B. 1993. V. 48. P. 11024.
- [10] Nakajima A., Ohshima Y. et al. // Appl. Phys. Lett. 1993. V. 62. P. 2631.
- [11] Borghesi A., Sassella A. et al. // Solid State Comm. 1993. V. 87. P. 1.