05;08;12 Полиморфизм пентаоксида ниобия и свойства ниобатов щелочных металлов — основ сегнетопьезоэлектрических материалов

© Е.М. Кузнецова, Л.А. Резниченко, О.Н. Разумовская, Л.А. Шилкина

Научно-исследовательский институт физики Ростовского государственного университета E-mail: esmit@krinc.ru

В окончательной редакции 20 сентября 2000 г.

Установлено существенное влияние полиморфных модификаций пентаоксида ниобия на свойства синтезированных порошков и керамик ниобатов щелочных металлов. Показано, что переход из двухфазного в однофазное состояние при термообработке Nb_2O_5 приводит к сдвигу фазовых равновесий в образующихся на его основе твердых растворах, совершенствованию их кристаллической структуры и экстремальному поведению электрофизических параметров. Сделано заключение о целесообразности использования полученных результатов при разработке практически важных сегнетопьезоэлектрических материалов.

Сегнетопьезоэлектрические керамические материалы (СПКМ) на основе ниобатов щелочных металлов (НЩМ) благодаря уникальным сочетаниям физических свойств нашли широкое применение в квантовой электронике, электрооптике, СВЧ-пьезотехнике и др. [1]. Основным компонентом при их создании является пентаоксид ниобия. Промышленно выпускаемый Nb₂O₅ практически всегда многофазен с наиболее частым преобладанием высокотемпературной модификации α_1 . Процентное соотношение и параметры сосуществующих фаз не регламентируются действующим Стандартом и от партии к партии Nb₂O₅ не воспроизводятся. Такая нестабильность кристаллической структуры Nb₂O₅, безусловно, может оказать существенное влияние на конечные свойства СПКМ и воспроизводимость их при массовом производстве.

С целью установления закономерностей изменения свойств ниобатных СПКМ от полиморфного состояния Nb_2O_5 предпринято изучение

36

Результаты рентгенографического исс	ледования представленных партий (до тер-
мообработки) (оригинальные данные)

N₂	Симметрия	Параметры элементарной ячейки								
партий	α_1 - и η -моди-	$lpha_1$ -модификаций				η -модификаций				
	фикаций	a,Å	b,Å	c,Å	β	a, Å	b,Å	c,Å	β	
47	Моноклинная	21.11	3.809	19.35	119°58′	28.58	3.817	17.52	$119^{\circ}48'$	
48	_"_	21.06	3.806	19.32	119°42′	28.55	3.820	17.47	$124^{\circ}42'$	
70	_"_	21.29	3.828	19.46	120°43′	28.65	3.821	17.44	124°13′	

заводских партий этого монооксида, синтезированных с их участием порошков твердых растворов (ТР) НЩМ и изготовленных керамик.

Были отобраны три партии Nb2O5 квалификации "Нбо-пт", в которых содержание *п*-фазы (по данным проведенного нами рентгенографического анализа)¹ составило 65% (партия 47), 80% (п. 70), 85% (п. 48) от количества основной α_1 -фазы. Оригинальные экспериментальные данные по рентгенографическому определению фазового состава исследованных нетермообработанных образцов приведены в таблице. Эти данные находятся в хорошем согласии с параметрами решеток модификаций α_1 , η -фазы Nb₂O₅, представленными в [2]. Поскольку, в интервале температур 1000 \div 1400°C устойчива именно она (α_1), можно предположить, что *η*-фаза более низкотемпературна. Чтобы исключить ее вклад в формирование свойств СПКМ, была осуществлена термообработка партий при различных температурах (T_{TO}) из интервала 950-1250°С с выдержкой при каждой температуре в течение двух часов. Оказалось, что повышение Т_{ТО} приводит к уменьшению концентрации η-фазы и ее практическому исчезновению при 1120°C в п. 70, 1150°C в п. 48, 1170°С в п. 47. Выше 1180°С все партии Nb₂O₅ содержат только α_1 -модификацию (рис. 1). "Очищение" Nb₂O₅ от *η*-фазы сопровождается и совершенствованием структуры основной α_1 -фазы, о чем свидетельствует сужение соответствующих дифракционных линий.

¹ Содержание η -фазы оценено по значению отношения интенсивностей сильных дифракционных линий 110 каждой из сосуществующих модификаций ($I_{110\eta}/I_{110\alpha_1}$).

Рис. 1. Зависимости процентного содержания η -фазы Nb₂O₅ (*1.1* — п. 70, *1.2* — п. 47, *1.3* — п. 48), полуширины рентгеновской линии b_{222} (2 — п. 47, синтезированный ТР 1; 3 — п. 48, синтезированный ТР 2), микродеформаций $\Delta d/d_{222}$ (4 — п. 47, ТР 1; 5 — п. 48, ТР 1; 6 — п. 48, ТР 2), процентного содержания *Rh*-фазы μ (7), *D* (8 — п. 70, синтезированный ТР 2; 9 — п. 70, Nb₂O₅; *10* — п. 70, керамика ТР 2; *11* — п. 47 керамика ТР 2) от T_{TO} .

39

Рис. 2. Зависимости $\varepsilon_{33}^{T}/\varepsilon_{0}(1), \varepsilon/\varepsilon_{0}(2), K_{p}(3), d_{31}(4)$, пьезочувствительности $g_{31}(5), Q_{m}(6)$, скоростей звука $V_{R}(7), V_{1}^{E}(8), Y_{11}^{E}(9), T$ от T_{TO} .

Рентгенографический анализ синтезированных порошков и керамик TP состава $(Na_{1-x}Li_x)NbO_3$ (x = 0.10 - TP1, x = 0.13 - TP2),полученных из обожженных проб анализируемых партий, показал, что параметры, объемы и деформации кристаллических ячеек остались практически теми же: отклонение от исходных значений составило $\sim 1.5\%$. Значительные изменения претерпели характеристики, определяющие фазовые равновесия в ТР, и совершенство их кристаллической структуры: отмечено уменьшение количества одной из сосуществующих в TP 2 фаз² (μ); интегральной ширины рентгеновской линии (b_{222}) и микродеформаций $(\Delta d/d)_{222}$. Аномальное поведение этих характеристик вдали от момента перехода $\alpha_1 + \eta \rightarrow \alpha_1$, вероятно, связано с началом потери устойчивости *η*-фазы (рис. 1). Обращает на себя внимание факт аномального роста среднего размера зерен (\bar{D}) керамик вблизи T_{TO} (рис. 1). Причина наблюдаемого может заключаться в следующем. Повышение Т_{ТО} приводит к резкому укрупнению частиц Nb₂O₅ и соответственно возрастанию размера частиц синтезированных порошков. Вдали от структурных превращений это приводит к потере активности синтезированных порошков к рекристаллизации при спекании и в результате к уменьшению \bar{D} керамики. Максимальные значения \bar{D} вблизи Т_{ТО} по аналогии с эффектом Хедвала (повышенной реакционной способностью твердых тел во время или в результате полиморфных превращений) обусловлены, по-видимому, интенсификацией диффузионных процессов, инициированной высокой подвижностью составных частей решетки при ее перестройке. В пользу разумности такой интерпретации свидетельствуют и минимальные при Т_{ТО} значения температуры начала интенсивного уплотнения синтезированных порошков при спекании и оптимальных температур спекания Т ТР.

Поведение структурных и микроструктурных характеристик TP определяет немонотонные изменения их диэлектрических, пьезоэлектрических, механических и упругих свойств (рис. 2) с экстремумами в окрестности температуры полиморфного превращения в Nb₂O₅. (Измерялись диэлектрические проницаемости до ($\varepsilon/\varepsilon_0$) и после ($\varepsilon_{13}^{-1}/\varepsilon_0$)

² В ТР 2 в соответствии с фазовой диаграммой системы (Na,Li)NbO₃ сосуществуют ромбоэдрическая (*Rh*) и ромбическая (*R*) фазы [3]. Так как однозначно разделить на рентгенограмме мультиплеты, принадлежащие *Rh*- и *R*-фазам, невозможно вследствие их наложения, процентное содержание *Rh*-фазы (μ) оценивалось как ($I_{211}^{Rh} - I_{N=6}^{Rh-R} \cdot 100\%$, где I_{211}^{Rh} — интегральная интенсивность отражения 211 *Rh*-фазы; $\sum I_{N=6}^{Rh+R}$ — интегральная интенсивность всего мультиплета с $N = h^2 + k^2 + l^2 = 6$.

Таким образом, полиморфное состояние Nb₂O₅ оказывает существенное влияние на характеристики синтезированных порошков ТР НЩМ и формирование экстремальных свойств образующихся керамик, что необходимо учитывать при разработке Nb-содержащих СПКМ.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (РФФИ) (грант № 99–02–17575).

Список литературы

- [1] Фесенко Е.Г., Данцигер А.Я., Резниченко Л.А. и др. // ЖТФ. 1982. Т. 52. № 11. С. 2262–2266.
- [2] Powder Diffraction. File. Data. Cards. Inorganic Section. Set. 16–57, 20–804. ICPDS. Swarthmore, Pennsylvania, USA, 1948–1977.
- [3] Резниченко Л.А., Шилкина Л.А. // Изв. АН СССР. Сер. физ. 1975. Т. 39. № 5. С. 1118–1121.