Рентгеновские исследования структуры перовскитных манганитов системы (La,Sr)MnO₃

© В.С. Гавико, А.В. Королёв, В.Е. Архипов, Н.Г. Бебенин, Я.М. Муковский*

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия * Московский государственный институт стали и сплавов, 119049 Москва, Россия

E-mail: gaviko@imp.uran.ru

(Поступила в Редакцию в окончательном виде 2 августа 2004 г.)

Приводятся результаты рентгеновских исследований перовскитоподобных манганитов составов $(La_{0.9}Sr_{0.1}Mn)_{0.9}O_3$ и $La_{1-x}Sr_xMnO_3$ с x = 0.1, 0.15, 0.2, 0.25. С использованием программного комплекса FullProf рассчитаны координаты атомов, измерены межатомные расстояния и углы в решетке при комнатной температуре в зависимости от концентрации допирующего элемента (Sr). Исследованы температурные изменения параметров кристаллической структуры и объема ячейки. Подробно изучены влияния структурных и магнитных фазовых переходов на параметры кристаллической структуры. Исследован и рассчитан объемный магнитоупругий вклад в термическое расширение объема.

Работа поддержана грантами Российского фонда фундаментальных исследований (№ 02-02-16425, 00-02-17544, 03-02-16065) и РФ "ИНТЕГРАЦИЯ".

1. Введение

В редкоземельных манганитах La_{1-x}Sr_xMnO₃ при комнатной температуре в зависимости от концентрации Sr или кислорода реализуются три типа структур: моноклинная $(P2_1/c)$, орторомбическая (Pnma) и ромбоэдрическая $(R\bar{3}c)$ [1–6]. Все эти структуры являются производными от кубической решетки перовскита. Орторомбическая ячейка строится таким образом, что два ее ребра ориентированы вдоль направлений кубической ячейки [110] и [110], третье ребро выбирают вдоль кубической оси [001]. В установке Рпта кубическая ось [001] совпадает с орторомбической осью b. Отличие моноклинной решетки от орторомбической заключается в отклонении одного из углов между гранями такой решетки от 90°. В ромбоэдрической ячейке главные оси совпадают с направлениями [110], [101] и [011] кубической. В идеальной кубической решетке углы между этими осями равны 60°. В ромбоэдрической установке (пространственная группа $R\bar{3}c$) угол отклоняется от этого значения. Следует отметить, что при описании ромбоэдрической решетки в гексагональной установке гексагональную ось с выбирают вдоль пространственной диагонали [111] кубической. Все перечисленные выше типы решеток перовскитоподобных манганитов в первом приближении можно рассматривать, как искаженную кубическую. Чаще всего обсуждаются следующие два типа искажений: развороты октаэдров MnO₆ относительно друг друга и ян-теллеровские деформации, искажающие сам октаэдр. В последнем случае по-разному изменяются шесть различных длин связи Мп-О — в одних направлениях они возрастают, в других уменьшаются. В зависимости от типа деформаций говорят о Q2или Q₃-ян-теллеровской модах (подробно см., например, в [1,2,5,6]).

В орторомбической фазе различают две модификации: псевдокубическую O^* с близкими значениями параметров решетки $a \approx c \approx b/\sqrt{2}$ и фазу O' с заметно большим различием в a, c и $b/\sqrt{2}$. Для фазы O' характерно присутствие ян-теллеровской моды Q_2 [1,2]. Воздействие этой моды приводит к смещению кислородных ионов в октаэдре MnO₆ таким образом, что все три типа расстояний Mn–O различаются. В фазе O^* влияние моды Q_2 существенно более слабое. В некоторых работах сообщают еще об одной ромбоэдрической фазе — O''. Она характеризуется полным подавлением ян-теллеровских деформаций [7,8].

Кроме перечисленных выше причин, приводящих к тем или иным деформациям решетки, большое воздействие на решетку могут оказывать различного рода упорядочения — это зарядовое упорядочение Mn⁺⁴ и Mn⁺³ ионов, упорядочение допирующих элементов, магнитное упорядочение. Для понимания природы эффектов, наблюдающихся в перовскитоподобных манганитах, важным является изучение влияния упорядочения на параметры кристаллической решетки. Выявить такое влияние можно по температурным зависимостям этих параметров. Наиболее полно температурные изменения структуры, изученные с помощью дифракции нейтронов на порошковых образцах, приведены в [4]. В настоящей работе с использованием рентгенографических методов исследования детально изучена кристаллическая структура как монокристаллов, так и порошков $(La_{0.9}Sr_{0.1}Mn)_{0.9}O_3$ и $La_{1-x}Sr_xMnO_3$ с x = 0.1, 0.15, 0.2, 0.25 в области температур 80-600 К и определено влияние магнитного упорядочения на параметры кристаллической решетки. В настоящее время данных по определению магнитоупругого вклада крайне мало.

2. Приготовление образцов и методика измерений

Поликристаллические образцы спекали из окислов компонентов La, Sr и Mn по стандартной технологии, затем из керамических заготовок, используя метод плавающей зоны с разогревом образца ксеноновой лампой до необходимой температуры, получали монокристаллы [9]. Ориентацию монокристаллов и фазовый состав контролировали рентгенографическими методами. Монокристаллы в виде иголки толщиной ~ 0.3 mm исследовали в рентгеновских камерах РКУ и РКВ с фотографическим методом регистрации.

Параметры кристаллической решетки определяли по дифрактограммам порошков, приготовленных из монокристаллов. Порошки с размером частиц $32-64\,\mu$ m изготовляли из части монокристаллов, измельчая и просеивая их через соответствующие сита. Съемку дифрактограмм при комнатной температуре проводили с использованием автоматизированных рентгеновских дифрактометров типа ДРОН в монохроматизированном излучении Cr- K_{α} . Температурные рентгеновские исследования проводили в специальной вакуумной камере в фильтрованном излучении Fe- K_{α} . Положение атомов, углы и расстояния между ними рассчитывали, используя программный комплекс FullProff-2001 [10].

3. Результаты и обсуждение

3.1. Кристаллическая структура манганитов при комнатной температуре. В соответствии с фазовой диаграммой [1,2,6,11] при комнатной температуре манганиты (La_{0.9}Sr_{0.1})_{0.9}MnO₃ и $La_{1-x}Sr_xMnO_3$ с x = 0.1, 0.15 обладают орторомбической *Pnma*, а с x = 0.2, 0.25 — ромбоэдрической $R\bar{3}c$ структурой. Исследования монокристаллов показали, что все исследованные монокристальные образцы двойниковые, т.е. в них обнаруживаются структурные домены, определенным образом ориентированные друг относительно друга. Ранее авторы работы [12] описали характерные двойники, встречающиеся в орторомбических монокристаллах манганитов. Двойниковая структура наблюдалась нами на самых маленьких монокристаллах, представляющих собой стержни диаметром ~ 0.3 mm, причем на этих образцах с орторомбической фазой присутствовали сразу все три типа доменов. Таким образом, можно заключить, что размер структурных доменов не превышает 100 µm. Близкое к этому значение размеров структурных доменов получено на образцах LaMnO₃ с помощью магнитных измерений свободного и текстурированного образцов. Именно в случае порошка с размером частиц ниже 100 µm не удавалось получить текстурированные образцы LaMnO₃, тогда как порошок с более крупными частицами легко текстурировался [13].

На рис. 1 для примера показаны расчетные и экспериментальные дифрактограммы порошков орторомбического (La_{0.9}Sr_{0.1})_{0.9}MnO₃ и ромбоэдрического

Рис. 1. Участки экспериментальных (Y_{Obs}), расчетных (Y_{Calc}) рентгеновских дифрактограмм, разности ($Y_{Obs}-Y_{Calc}$) и положений брэгговских пиков поликристаллов манганитов.

Рис. 2. Концентрационная зависимость молярного объема ячейки манганитов La₁₋₃Sr_xMnO₃. Кружки и треугольники относятся к орторомбической и ромбоэдрической решеткам соответственно.

La_{0.75}Sr_{0.25}MnO₃. Внизу под дифрактограммами сплошной линией показана разность между экспериментальными и расчетными значениями интенсивности, штриховыми линиями — расчетные положения брэгговских пиков. Дифрактограммы остальных составов подобны либо первой, либо второй из представленных на рис. 2. Как

хорошо видно из рисунков, исследуемые материалы являются однофазными. Рассчитанные положения атомов в решетке, общий и изотропные атомные температурные факторы для всех составов помещены в табл. 1 и 2. Там же приведены значения параметров кристаллической

Таблица 1. Параметры кристаллической решетки, координаты атомов, общий (O) и изотропные атомные (B) температурные факторы, факторы сходимости (R_P, R_{wP}), рассчитанные для орторомбической решетки (Pnma), где атомы La/Sr в манганитах (La,Sr)MnO₃ занимают позиции 4c (x, 1/4, z), Mn — 4a (0,0,0), O1 — 4c (x, 1/4, z), O2 — 8d (x, y, z)

			$(La_{1-x}Sr_x)MnO_3$		
		$(La_{0.9}Sr_{0.1})_{0.9}MnO_3$	<i>x</i> = 0.1	<i>x</i> = 0.15	
La/Sr	x	0.9761	0.9822	0.9998	
	z	0.5025	0.5038	0.4934	
	B (Å ²)	0.0236	0.6220	0.0429	
Mn	B (Å ²)	0.0218	0.1725	0.0019	
O1	x	0.5060	0.5062	0.5666	
	z	0.4130	0.4684	0.4970	
	B (Å ²)	0.0161	0.8014	0.0018	
O2	x	0.2722	0.2462	0.2193	
	У	0.9778	0.9649	0.9656	
	z	0.2473	0.2830	0.2668	
	B (Å ²)	0.0391	0.0690	0.0500	
<i>a</i> , Å		5.550	5.548	5.545	
<i>b</i> , Å		7.780	7.748	7.790	
$(b/\sqrt{2}, \text{\AA})$		(5.501)	(5.479)	(5.508)	
<i>c</i> , Å		5.542	5.576	5.506	
$V, Å^3$		239.30	239.69	237.84	
0, Å ²		0.1313	0.1168	0.01416	
$R_P(\%)$		7.25	5.35	4.81	
$R_{wP}(\%)$		8.4	7.35	6.35	

Таблица 2. Параметры кристаллической решетки, координаты атомов, общий (O) и изотропные атомные (B) температурные факторы, факторы сходимости (R_P, R_{wP}), рассчитанные для ромбоэдрической решетки ($R\bar{3}c$), где атомы La/Sr в манганитах (La,Sr)MnO₃ занимают позиции 6а (0,0,1/4), Mn — 6b (0,0,0), O — 18e (x, 0, 1/4)

		$(La_{1-x}Sr_x)MnO_3$		
		x = 0.2	<i>x</i> = 0.25	
La/Sr	B (Å ²)	0.11315	0.02501	
Mn	B (Å ²)	0.10096	0.03228	
0	x	0.44898	0.44520	
	B (Å ²)	0.18854	0.33117	
<i>a</i> , Å		5.532	5.522	
<i>c</i> , Å		13.368	13.370	
c/A		0.414	0.413	
<i>V</i> , Å ³		351.83	350.61	
$O, Å^2$		0.00763	0.0696	
$R_P(\%)$		4.54	5.4	
$R_{wP}(\%)$		5.5	7.35	

Рис. 3. Концетрационная зависимость межатомных расстояний Мп–О и углов О–Мп–О в октаэдре МпО₆ манганитов La_{1-x}Sr_xMnO₃.

решетки. Объем элементарной ячейки, приходящийся на одну формульную единицу (рис. 2), с ростом xуменьшается из-за того, что ионный радиус Sr меньше радиуса La. J.F. Mitchell с соавторами в работе [3] построили структурную фазовую диаграмму P-x и привели данные значений параметров кристаллических решеток всех встречающихся в этой системе фаз в зависимости от давления кислорода P во время синтеза поликристаллов. Из приведенных в [3] значений параметров решеток следует, что с понижением давления кислорода, а значит и с понижением его концентрации, объем кристаллической решетки возрастает; к сожалению, авторы [3] ничего не говорят об этим факте и вообще не приводят величины объемов ячейки.

В нашем случае объем ячейки $(La_{0.9}Sr_{0.1})_{0.9}MnO_3$ меньше, чем у $La_{0.9}Sr_{0.1}MnO_3$. Сопоставляя значения параметров кристаллической решетки (табл. 1 и 2) с данными работы [3], можно предположить, что состав наших образцов близок составу, полученному в [3] при давлении кислорода $1 \cdot 10^{-3}$ атмосфер.

Из табл. 1 видно, что в образцах состава La_{0.9}Sr_{0.1}MnO₃ при комнатной температуре параметры кристаллической решетки *a*, $b/\sqrt{2}$ и *c* орторомбической фазы сильно различаются благодаря присутствию эффекта Яна-Теллера, что характерно для фазы *O'*. В образцах состава (La_{0.9}Sr_{0.1})_{0.9}MnO₃ параметры *a* и *c* близки по величине, а в La_{0.85}Sr_{0.15}MnO₃ близки $b/\sqrt{2}$ и *c*. Эти

	$(La_{0.9}Sr_x)_{0.9}MnO_3$	$La_{1-x}Sr_xMnO_3$			
	x = 0.1	x = 0.1	x = 0.15	x = 0.20	<i>x</i> = 0.25
		Distance, Å			
Mn–O	2.014 2.022 1.930	1.970 2.070 1.919	1.982 1.995 1.957	1.966	1.964
		Angle, deg			
	150	160	159		
Mn–O–Mn	165	161	163	164	164
	98	93	91		
O–Mn–O	92	83	91	91	91
	91	91	90		

Таблица 3. Межатомные расстояния, выраженные в ангстремах Mn–O и углы между Mn–O–Mn и O–Mn–O в манганитах (La,Sr)MnO₃

составы тоже могут быть отнесены к O' [14,15]. Наши значения параметров решетки хорошо согласуются с опубликованными ранее (см., например, [4,7]).

На рис. 3 приведены расчетные значения межатомных расстояний Мп–О и углов между атомами Мп–О–Мп и О–Мп–О в октаэдре МпО₆ для всех составов. Как видно из рисунка, при комнатной температуре различия межатомных расстояний с увеличением концентрации Sr уменьшаются, исчезая в ромбоэдрической фазе. В ромбоэдрической решетке атомы кислорода и марганца имеют только по одной позиции (18е) и (6b) с координатами (x, 0, 1/4) и (0,0,0) соответственно, поэтому возможно только одно межатомное расстояние Мп–О (табл. 2 и 3). В ромбоэдрической решетке октаэдры МпО₆ слегка искажены, и угол между атомами О–Мп–О, по нашим расчетам, составляет 91°. Кроме того, октаэдры в ромбоэдрической фазе развернуты друг относительно друга на угол в 164 градуса (углы Мп–О–Мп, рис. 3).

3.2. Температурная зависимость параметров решетки. Во всех изученных образцах в интервале температур 80-600 К присутствуют структурные фазовые переходы. В манганитах состава La_{0.9}Sr_{0.1}MnO₃ орторомбическая фаза О' существует в интервале температур $100 \le T \le 330$ К. Ниже и выше этого интервала она переходит в псевдокубическую O^* (рис. 4, *a*). В работе [5] установлено, что фазовые переходы $O'-O^*$ вызваны ян-теллеровской модой деформации Q₂, которая "включается" в области температур существования фазы О'. Для состава La_{0.9}Sr_{0.1}MnO₃ низкотемпературный переход $O^* - O'$ осуществляется в узком (3-5 градусов) интервале температур по типу фазового перехода 1-го рода, высокотемпературный переход $O' - O^*$ происходит постепенно в интервале 40-50 градусов (рис. 4, a). Оба перехода сопровождаются изменением объема элементарной ячейки (рис. 5). "Ян-теллеровская" фаза О' имеет заметно больший объем элементарной ячейки, чем фаза О*. В [4] подобный переход из О' в О* фазу в манганитах La_{0.89}Sr_{0.11}MnO₃ осуществляется через смесь фаз по типу фазового перехода 1-го рода. Мы в образцах смесь фаз не обнаружили.

В образцах с x = 0.15 и 0.2 наблюдается другой тип структурных фазовых переходов — переход из низкотемпературной орторомбической Рпта фазы в высокотемпературную ромбоэдрическую $R\bar{3}c$. Для x = 0.15и 0.2 этот переход происходит при $T\sim 360$ и $\sim 115\,\mathrm{K}$ соответственно (рис. 4, b, c). В обоих случаях переход осуществляется по типу фазового перехода 1-го рода, и существует интервал температур, в котором обе фазы (орторомбическая и ромбоэдрическая) сосуществуют. В манганитах x = 0.2 этот интервал заметно уже, чем в образце с x = 0.15 и составляет ~ 5 и ~ 20 K соответственно. Можно говорить о тенденции расширения области структурных фазовых переходов в тех манганитах, в которых эти переходы осуществляются при более высоких температурах независимо от типа перехода. Переход из орторомбической в ромбоэдрическую фазу сопровождается уменьшением объема ячейки (рис. 5). В литературе данных по переходу $Pnma-R\bar{3}c$ в манганитах типа $La_{1-x}Sr_xMnO_3$ мало и совершенно отсутствуют данные о наблюдении смеси фаз при таком переходе, а также данные об изменении объема ячейки при этом переходе.

На температурных зависимостях параметров решеток хорошо заметны особенности (перегибы), связанные с магнитным упорядочением. На рис. 5 стрелками показано значение температур Кюри T_c . Как видно из рисунка, особенности начинаются несколько выше температуры Кюри. Это обстоятельство связано с тем, что магнитоупорядоченные кластеры в парамагнитной матрице формируются при температурах, значительно превышающих T_c . Таким образом, параметры кристаллической решетки чувствительны не только к появлению дальнего магнитного порядка, возникающего при $T = T_c$, но и к ближнему порядку, проявляющемуся выше температуры Кюри.

Сравнивая экспериментальную температурную зависимость объема элементарной ячейки с расчетной за-

$$z(T) = z_0 + A_z T F(T_{\Theta}/T),$$

где z — какой-либо параметр решетки или объем элементарной ячейки, $F(T_{\Theta}/T) = \frac{1}{T} \int_{0}^{T} C_V dT$, C_V — теплоемкость при постоянном давлении, A_z — константа, z_0 — значение параметра z при T = 0 (определяли из экстраполяции), T_{Θ} — температура Дебая. В рас-

Рис. 4. Температурная зависимость параметров кристаллической решетки поликристаллов манганитов. Светлые символы соответствуют орторомбической, темные — ромбоэдрической фазам. Штрихпунктирной линией показан фононный вклад в термическое расширение решетки.

Рис. 5. Температурная зависимость молярного объема ячейки поликристаллов манганитов. Штрихпунктирной линией показан фононный вклад в термическое расширение объема.

четах предполагалось, что при температурах значительно выше температуры магнитного упорядочения температурная зависимость параметров решетки совпадает с поведением фононного вклада. При расчете фононного вклада значения температур Дебая для $x = 0.15 - (T_{\Theta} = 390 \text{ K})$ и $x = 0.2 - (T_{\Theta} = 400 \text{ K})$ взяты из работы [17]. На рис. 4, *с* для x = 0.2 фононный вклад показан штрихпунктирной линией. Хорошо видно, что магнитоупругий вклад в La_{0.8}Sr_{0.2}MnO₃ является анизотропным, т.е. отклонение температурной зависимости параметров решетки от расчетной зависимости Дебая–Грюнайзена для параметров *а* и *с* разное. Магнитоупругий вклад, измеренный вдоль направления **а**.

Температурные зависимости объема элементарной ячейки V для составов x = 0.1, 0.15 и 0.2 показаны на рис. 5. На кривых V(T) для x = 0.15 и 0.2 ясно виден скачок объема, обусловленный наличием фазового перехода первого рода из высокотемпературной ромбоэдрической фазы $R\bar{3}c$ в низкотемпературную орторомбическую *Рпта*. Для этих же составов на рис. 5 штрихпунктирной линией показан рассчитанный фононный вклад. Разность между фононным вкладом и экспериментальной зависимостью объема элементарной ячейки (ΔV) , приведенная к экспериментальному объему V, т.е. $\gamma = \Delta V/V$, в зависимости от параметра $t = T/T_c$ приведена на рис. 6. Штрихпунктирной линией на рисунке показана экстраполяция к t = 0. На вставке рис. 6 показана зависимость $\gamma(m^2)$ ($m = M(H = 10 \,\mathrm{kOe})/M_s$, *М* — намагниченность, *M*_s — намагниченность насыщения). Из рисунка ясно, что зависимость $\gamma(m^2)$ для $m^2 > 0.015$ близка к линейной, что характерно для магнитоупругого вклада.

Причина отклонения $\gamma(m^2)$ при малых значениях m^2 от прямой линии связана с формированием неоднородного состояния вблизи магнитного фазового перехода, поскольку на магнитоупругий вклад в термическое расширение кристаллической решетки большое влияние оказывает ближний магнитный порядок. Вплоть

Рис. 6. Температурная зависимость магнитоупругого вклада $\gamma = \Delta V/V(t)$ $(t = T/T_c)$ манганитов La_{1-x}Sr_xMnO₃ (треугольники — x = 0.15, кружки — x = 0.2, штрихпунктирная линия — экстраполяция γ к t = 0). На вставке показана зависимость γ от m^2 $(m = M/M_s(t))$ манганита x = 0.15.

до значений $t \sim 1.25$ этот вклад хорошо заметен, так что в парамагнитной матрице манганитов вплоть до этих значений t еще сохраняются кластеры, обладающие ближним магнитным порядком (рис. 4–6).

Экстраполируя зависимость $\gamma(t)$ к t = 0 для образцов x = 0.15 и 0.2, мы оценили максимальную величину магнитоупругого вклада в термическое расширение объема. Она оказалась близка к ~ $3.7 \cdot 10^{-3}$. Важно отметить, что манганиты с x = 0.15 и 0.2 вблизи T_c обладают различной структурой кристаллической решетки: манганиты с x = 0.15 имеют орторомбическую, а x = 0.2 ромбоэдрическую решетку, тем не менее их зависимости $\gamma(t)$ совпадают.

Как известно (см., например, [6]), в манганитах с x = 0.15 при T < 200 К существует зарядовое упорядочение. Наши данные показывают, что наличие зарядового упорядочения существенно не сказывается на характере температурного изменения объема.

4. Заключение

Изучена кристаллическая структура редкоземельных манганитов $(La_{0.9}Sr_{0.1}Mn)_{0.9}O_3$ и $La_{1-x}Sr_xMnO_3$ с x = 0.1, 0.15, 0.2, 0.25. Определены параметры кристаллической решетки, координаты атомных позиций, расстояния между атомами при комнатной температуре. Для образцов $(La_{0.9}Sr_{0.1}Mn)_{0.9}O_3, La_{1-x}Sr_xMnO_3$ с x = 0.1, 0.15, имеющих орторомбическую решетку (пространственная группа *Pnma*) при комнатной температуре, характерна различная степень деформации обнаруживается в образцах состава $(La_{0.9}Sr_{0.1}Mn)_{0.9}O_3,$ меньшая — в образцах манганита $La_{0.85}Sr_{0.15}MnO_3$. В манганите $La_{0.85}Sr_{0.15}MnO_3$ орторомбическая фаза по величине деформации и степени разворота октаэдров

друг относительно друга наиболее близка к ромбоэдрической фазе (группа $R\bar{3}c$), реализующейся при комнатной температуре в манганитах с x = 0.2 и 0.25.

Рентгеновские исследования при низких температурах позволили определить характер зависимости параметров кристаллической решетки с температурой и изменение объема при структурных фазовых переходах, рассчитать магнитоупругий вклад в термическое расширение. Объемный магнитоупругий вклад не зависит от типа кристаллической структуры и оценивается нами при $T \sim 0$ К равным величине $\gamma \sim 3.7 \cdot 10^{-3}$.

Авторы выражают благодарность сотрудникам Института физики металлов УрО РАН Г.В. Ивановой и Т.П. Лапиной за помощь в проведении рентгеновских исследований на монокристалле, а также Р.И. Зайнулиной за предоставление данных по магнитным измерениям.

Список литературы

- Y. Yamada, O. Hino, S. Nohdo, R. Ranao, T. Inami, S. Katano. Phys. Rev. Let. 77, 904 (1996).
- [2] H. Kawano, R. Kajimoto, M. Kubota, H. Yoshizawa. Phys. Rev. B 53, 14709 (1996).
- [3] J.F. Mitchell, D.N. Argyriou, C.D. Potter, D.G. Hinks, J.D. Jorgensen, S.D. Bader. Phys. Rev. B 54, 6172 (1996).
- [4] B. Dabrowski, X. Xiong, Z. Bukowski, R. Dybzinski, P.W. Klamut, J.E. Siewenie, O. Chmaissem, J. Shaffer, C.W. Kimball, J.D. Jorgensen, S. Short. Phys. Rev. B 60, 7006 (1999).
- [5] С.В. Гавико, Е.В. Архипов, А.В. Королев, В.Е. Найш, Я.М. Муковский. ФТТ 41, 6, 1064 (1999).
- [6] В.Е. Найш. ФММ 92, 5, 16 (2001).
- [7] L. Pinsard, J. Rodrigues-Carvajal, A. Revcolevsci. J. Alloys Comp. 262–263, 152 (1997).
- [8] Q. Huang, A. Santoro, J.W. Lynn, R.W. Erwin, J.A. Borchers, J.L. Peng, R.L. Greene. Phys. Rev. B 55, 14987 (1996).
- [9] A.M. Balbashov, S.G. Karabashev, Y.M. Mukovskii, S.A. Zver'kov. J. Cryst. Growth 167, 365 (1996).
- [10] J. Rodrigues-Carvajal. Physica B 192, 55 (1993).
- [11] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura. Phys. Rev. B 51, 14103 (1995).
- [12] F. Moussa, M. Hennion, J. Rodriguez-Carvajal, H. Moudden, L. Pinsard, A. Revcolevschi. Phys. Rev. B 54, 15149 (1996).
- [13] A.V. Korolyov, V.E. Arkhipov, V.S. Gaviko, M.I. Kurkin, T.P. Lapina, Ya.M. Mukovskii. ICM 2003, to be published in J. Magn. Magn. Mater.
- [14] R.I. Zainullina, N.G. Bebenin, V.V. Mashkautsan, A.M. Burkhanov, V.S. Gaviko, V.V. Ustinov, Y.M. Mukovskii, D.A. Shulyatev, V.G. Vassiliev. XOTO 120, 139 (2001).
- [15] R.I. Zainullina, N.G. Bebenin, A.M. Burkhanov, V.V. Ustinov, Ya.M. Mukovskii. Phys. Rev. B 66, 064 421 (2002).
- [16] Н. Ашкрофт, Н. Мермин. Физика твердого тела. Мир, М. (1979).
- [17] T. Okuda, A. Asamitsu, Y. Tomioka, T. Kimura, Y. Taguchi, Y. Tokura. Phys. Rev. Lett. 81, 3203 (1998).