# Многостадийное радиационно-стимулированное изменение микротвердости монокристаллов Si, инициируемое малоинтенсивным β-облучением

© Ю.И. Головин, А.А. Дмитриевский, Н.Ю. Сучкова, М.В. Бадылевич\*

Тамбовский государственный университет им. Г.Р. Державина, 392622 Тамбов, Россия \* Институт физики твердого тела Российской академии наук,

142432 Черноголовка, Московская обл., Россия

E-mail: dmitr2002@tsu.tmb.ru

#### (Поступила в Редакцию 6 августа 2004 г.)

Исследованы радиационно-индуцированные и пострадиационные изменения микротвердости монокристаллов кремния, возникающие в результате облучения слабоинтенсивным ( $I = 9 \cdot 10^5 \text{ cm}^{-2} \cdot \text{s}^{-1}$ ) потоком  $\beta$ -частиц (W = 0.20 + 0.93 MeV). Обнаружено характерное время облучения  $\tau_c = 75 \text{ min}$ , при котором наблюдается инверсия знака радиационно-пластического эффекта: облучение в течение  $\tau < \tau_c$  приводит к немонотонному обратимому упрочнению, а в течение  $\tau > \tau_c$  — к немонотонному обратимому разупрочнению. Показана корреляция немонотонных зависимостей микротвердости и концентрации электрически активных дефектов с акцепторными уровнями  $E_c - 0.11 \text{ eV}$ ,  $E_c - 0.13 \text{ eV}$  и  $E_c - 0.18 \text{ eV}$  от времени облучения.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты № 02-02-17571, 02-02-17024), а также программы "Университеты России" (грант № У.Р.01.01.013).

Облучение кремния электронами с энергией выше порога дефектообразования ( $W > 170 \, \text{keV}$ ) позволяет селективно модифицировать его электрические свойства [1,2]. В настоящее время большинство электрически активных радиационных дефектов (РД) надежно идентифицировано. Наибольший интерес вызывает облучение при температурах  $T > 300 \, \text{K}$ . Это связано с термической стабильностью РД, генерируемых электронами, при температурах, близких к комнатной [3]. Известно [4,5], что при  $T \approx 300 \,\mathrm{K}$  микротвердость H монокристаллов кремния определяется главным образом подвижностью неравновесных точечных дефектов и, вероятно, фазовыми переходами под индентором. Следовательно, микротвердость может служить индикатором состояния собственных и радиационных структурных дефектов. Действительно, в [6] было обнаружено немонотонное обратимое изменение Н монокристаллов кремния, инициируемое малыми дозами (флюенс  $F < 1.2 \cdot 10^{12} \, {\rm cm}^{-2}$ ) β-облучения при комнатной температуре. В интервале флюенсов  $F = 3 \cdot 10^{11} - 1.2 \cdot 10^{12} \text{ сm}^{-2}$  наблюдалось восстановление микротвердости до исходного значения  $H_0$ . Релаксация Н к Н<sub>0</sub> происходила и в том случае, когда облучение прекращалось после достижения флюенсом значения  $F = 3 \cdot 10^{11} \, {\rm cm}^{-2}$ . Интересно отметить, что скорости восстановления Н в обоих случаях были одинаковыми (в пределах погрешности). Это позволило авторам [6] предположить возможность существования критического значения флюенса (на более ранней стадии облучения), определяющего дальнейшую эволюцию подсистемы структурных дефектов в кремнии.

Поскольку в отличие от спектроскопических методов тестирование микротвердости не позволяет индентифицировать тип точечных дефектов, синхронно с изме-

рениями *H* целесообразно регистрировать, например, спектры DLTS (Deep-level transient spectroscopy). В связи с этим настоящая работа посвящена выявлению стадий облучения, инициирующих дальнейшие изменения микротвердости, и установлению связи между радиационно-стимулированными изменениями *H* и концентрации электрически активных дефектов.

### 1. Экспериментальная методика

Исследовались бездислокационные монокристаллические образцы кремния двух видов: выращенные методом бестигельной зонной плавки — Fz-Si (БИГЕ-600) и методом Чохральского — Cz-Si (КЭФ-10). Концентрация кислорода в них различается на два порядка величины. Однако в [6] было показано, что инициируемые  $\beta$ -облучением изменения микротвердости в обоих типах образцов происходят практические одинаково.

Для облучения образцов использовался радиоактивный источник <sup>90</sup>Sr + <sup>90</sup>Y с активностью A = 14.5 MBq. Средняя энергия эмиттируемых электронов составляла 0.20 MeV для <sup>90</sup>Sr и 0.93 MeV для <sup>90</sup>Y, интенсивность  $I = 9 \cdot 10^5$  cm<sup>-2</sup> · s<sup>-1</sup>. Облучение производилось на воздухе при комнатной температуре в диапазоне флюенсов от  $F = 10^9$  до  $1.2 \cdot 10^{12}$  cm<sup>-2</sup>. Тестирование микротвердости по Виккерсу *H* поверхностей типа (111) осуществлялось на микротвердом ПМТ-3. Для контроля состояния глубоких уровней, создаваемых РД, регистрировались спектры DLTS [7]. Для этого на поверхности (111) образца (в этой серии эксприментов исследовались монокристаллы Cz-Si, содержание кислорода и углерода в которых обычно одного порядка величины) был сформирован диод Шоттки путем напыления слоя золота толщиной  $2-3\,\mu\text{m}$  в вакууме не хуже  $10^{-3}$  Ра. Спектры DLTS получались с помощью стандартной методики. Для тестирования микротвердости и регистрации спектров DLTS образцы периодически извлекались из камеры, в которой происходило облучение. Время, затраченное на измерительные процедуры (~ 30 min), в дальнейшем учитывалось (вычиталось) при построении дозовой зависимости.

#### 2. Результаты и их обсуждение

Обнаружено, что в зависимости от дозы облучения меняются качественный вид и кинетика  $\beta$ -стимулированных изменений H монокристаллов Fz-Si (рис. 1). Облучение в течение  $\tau = 20$  min приводит к немонотонному обратимому упрочнению кремния (рис. 1, a). Две формы точек на рис. 1, a отражают результаты тестирования микротвердости двух образцов, подвергнутых облучению в одинаковых условиях. Совпадение зависимостей H(t), полученных на двух различных образцах, убеждает в надежности неожиданного на пер-



**Рис. 1.** Зависимости относительного изменения микротвердости  $\Delta H/H_0$  ( $\Delta H = H_t - H_0$ , где  $H_0$  и  $H_t$  — начальное и измеренное в момент времени *t* значения микротвердости соответственно) от времени (включающего время облучения  $\tau$ ) для образцов Fz-Si, облученных в течение  $\tau$ .  $\tau$ , h: a - 0.3, b - 1.25, c - 2, d - 413.



**Рис. 2.** Типичный спектр DLTS, полученный в следующих условиях: частота v = 164 Hz, длительность импульса  $\tau_p = 0.1 \,\mu$ s, запирающее напряжение  $U_b = 4$  V, напряжение обратного импульса  $U_p = 3.5$  V, время облучения  $\tau = 137$  h.

вый взгляд постэффекта упрочнения при столь малых дозах. Экспозиция образцов в поле *β*-частиц в течение  $\tau_c = 75 \,\mathrm{min}$  приводит к "гашению" постэффекта упрочнения, дальнейших изменений Н (в пределах погрешности) не наблюдается (рис. 1, b). Облучение образцов в течение 2h приводит к обратимомоу разупрочнению (рис. 1, с). Из этого следует, что в окрестности характерного времени экспозиции т<sub>с</sub> существует точка инверсии знака радиационно-пластического эффекта. При непрерывном облучении в течение 413 h величина Н испытывает немонотонное уменьшение с последующим восстановлением до исходного значения  $H_0$  (рис. 1, d). Зависимость H(t) в случае непрерывного четырехсотчасового облучения также исследовалась на двух образцах. Полученные результаты свидетельствуют в пользу того, что уже на ранних стадиях облучения ( $F \sim 10^9 \, {
m cm}^{-2}$ ) инициируются долговременные процессы в подсистеме структурных дефектов, отражающиеся на величине Н. Наиболее вероятной причиной немонотонного характера пострадиационных изменений микротвердости является изменение с течением времени концентраций различных комплексов РД.

Поскольку в радиационно-стимулированном изменении микротвердости могут принимать участие электрически активные комплексы РД, в следующей серии экспериментов синхронно с микротвердостью методом DLTS исследовалась зависимость концентрации дефектов акцепторного типа N от времени облучения  $\tau$ .

Как известно [8,9], облучение (обычно  $F > 10^{14}$  cm<sup>-2</sup>,  $I > 10^{12}$  cm<sup>-2</sup> · s<sup>-1</sup>) при комнатной температуре генерирует ряд донорных и акцепторных комплексов, идентифицированных как бивакансии, *А*-центры, *E*-центры, *K*-центры и др.

На рис. 2 представлен типичный спектр DLTS, полученный в условиях нашего эксперимента



**Рис. 3.** Зависимость изменения концентрации N(a) дефектов с акцепторными уровнями  $E_c - 0.11$  eV (1),  $E_c - 0.13$  eV (2) и  $E_c - 0.18$  eV (3) и микротвердости H(b) монокристаллов Cz-Si от времени облучения  $\tau$ . I, II —  $H(\tau)$ , измеренные на двух различных образцах.

 $(I = 9 \cdot 10^5 \text{ cm}^{-2} \cdot \text{s}^{-1}, F = 4 \cdot 10^{11} \text{ cm}^{-2})$ . Как видно, он характеризуется всего тремя пиками (в отличие от случаев высокоинтенсивного облучения до флюенсов  $F \sim 10^{14} - 10^{15} \text{ cm}^{-2}$ , когда добавляются пики, обусловленные бивакансиями и вакансионно-примесными комплексами). На рис. 3 приведены данные, демонстрирующие корреляцию между  $\beta$ -стимулированными изменениями концентрации N акцепторных комплексов с энергией  $E_c - 0.11 \text{ eV}$  ( $E_1$ ),  $E_c - 0.13 \text{ eV}$  ( $E_2$ ) и  $E_c - 0.18 \text{ eV}$  ( $E_3$ ) (соответственно кривые I-3 на рис. 3, a) и величины́ H для монокристаллов Cz-Si (рис. 3, b).

Междоузельные атомы кремния могут вытеснять углерод (находящийся в узлах кристаллической решетки) в междоузельное положение по реакции Уоткинса  $Si_i + C_s \rightarrow Si_s + C_i$ . Междоузельному углероду соответствует акцепторный уровень  $E_c - 0.11 \text{ eV}$  [8]. В свою очередь перешедшие в междоузельное состояние атомы углерода могут устанавливать связь с атомами углерода, находящимися в узлах кристаллической решетки [10]. Акцепторный уровень комплекса  $C_i - C_s$  характеризуется значением  $E_c - 0.17 \text{ eV}$  [8,10]. Известно [11], что при

радиационно-стимулированном появлении свободных вакансий в кремнии они, диффундируя по кристаллу, наиболее активно захватываются изолированными атомами кислорода с образованием комплексов акцепторного типа  $V + O \rightarrow V - O$  (глубина залегания  $E_c - 0.17 \,\mathrm{eV}$ ). В связи с этим наблюдаемые в наших экспериментах пики с энергетическими уровнями  $E_c - 0.11 \, \text{eV}$  и  $E_c - 0.18 \, {\rm eV}$  можно идентифицировать как междоузельный углерод С<sub>i</sub> и А-центр и/или комплекс С<sub>i</sub>-С<sub>s</sub> соответственно. Акцепторный уровень  $E_c - 0.13 \, \text{eV}$  обычно связывают с междоузельным бором [8], парой FeAl [12], а в облученном протонами кремнии — с водосодержащим комплексом [13]. Используемые в работе образцы и тип облучения исключают возможность появления последних трех РД в достаточном для их регистрации количестве. В связи с этим авторы затрудняются указать природу наблюдаемого дефекта с акцепторным уровнем  $E_c - 0.13 \, \text{eV}.$ 

Изменение концентарций двух идентифицированных дефектов может являться результатом широкого спектра реакций, среди продуктов которых могут оказаться и электрически неактивные:

$$egin{aligned} V + {
m O}_i &
ightarrow {
m VO}; &{
m Si}_i + V{
m O} 
ightarrow {
m O}_i; \ V + {
m C}_i &
ightarrow {
m C}_s; &{
m Si}_i + {
m C}_s 
ightarrow {
m Si}_s + {
m C}_i; \ {
m C}_i + {
m C}_s &
ightarrow {
m C}_i {
m C}_s; &{
m Si}_i + V 
ightarrow {
m Si}_s &{
m M}$$
 т.д.

Высокая подвижность при комнатной температуре и сравнительно низкая концентрация (при  $I = 9 \cdot 10^5 \text{ cm}^{-2} \cdot \text{s}^{-1}$ ) образующихся вакансий и междоузельных атомов, по-видимому, приводят к неравномерному изменению концентраций указанных комплексов и, кроме того, к созданию более сложных агрегатов. Немонтонные зависимости  $N(\tau)$  и  $H(\tau)$  обусловлены, на наш взгляд, конкурирующим характером протекающих реакций.

Таким образом, в настоящей работе исследована кинетика индуцированных облучением изменений микротвердости Fz-Si. Выявлен многостадийный характер преобразования подсистемы структурных (собственных и радиационных) дефектов. Обнаружено критическое значение времени облучения  $\tau_c$  (при интенсивности облучения  $I = 9 \cdot 10^5 \, {\rm cm}^{-2} \cdot {\rm s}^{-1})$ , в окрестности которого меняется знак радиационно-пластического эффекта. Показано, что при слабоинтенсивном облучении монокристаллов Cz-Si наблюдается немонотонное изменение концентрации N междоузельного углерода, а также кислородно-вакансионных комплексов и/или комплексов, состоящих из междоузельного углерода и углерода в узле. Немонотонные изменения концентраций N указанных дефектов и микротвердости Н по мере нарастания флюенса происходят в противофазе.

Авторы выражают благодарность Ю.И. Иунину за помощь в проведении экспериментов.

## Список литературы

- [1] В.С. Вавилов. УФН 84, 3, 431 (1964).
- [2] В.А. Козлов, В.В. Козловский. ФТП 35, 7, 769 (2001).
- [3] Радиационные эффекты в полупроводниках / Под ред. Л.С. Смирнова. Наука, Новосибирск (1979). 224 с.
- [4] B.Ya. Farber, V.I. Orlov, V.I. Nikitenko, A.H. Heuer. Phil. Mag. A 78, 671 (1998).
- [5] Yu.I. Golovin, A.I. Tyurin, B.Ya. Farber. Phil. Mag. A 82, 10, 1857 (2002).
- [6] Ю.И. Головин, А.А. Дмитриевский, И.А. Пушнин, Н.Ю. Сучкова. ФТТ 46, 10, 1790 (2004).
- [7] D.V. Lang. J. Appl. Phys. 45, 7, 3023 (1974).
- [8] B.G. Svensson. EMIS Datareviews. Ser. 20. (1998). P. 763.
- [9] В.С. Вавилов, Н.П. Кекелидзе, Л.С. Смирнов. Действие излучений на полупроводники. Наука, М. (1998). 192 с.
- [10] L.G. Song, X.D. Zhan, B.V. Benson, G.D. Watkins. Phys. Rev. Lett. 60, 460 (1988).
- [11] G.D. Watkins, J.W. Corbett. Phys. Rev. 121, 1001 (1961).
- [12] A.A. Istratov, H. Hieslmair, E.R. Weber. Appl. Phys. A 69, 44, 13 (1999).
- [13] K. Irmscher, H. Klose, L. Maass. J. Phys. C 17, 6317 (1984).