Исследование кластеров примесных ионов железа в кристалле BaF₂ методом ЭПР

© Е.Р. Житейцев, В.А. Уланов, М.М. Зарипов, Е.П. Жеглов

Казанский физико-технический институт им. Е.К. Завойского Российской академии наук, 420029 Казань, Россия

E-mail: ulanov@dionis.kfti.kcn.ru

(Поступила в Редакцию 29 июля 2004 г.)

В облученных рентгеновскими лучами кристаллах BaF_2 : Fe ($c_{Fe} \approx 0.002$ at.%) методом ЭПР обнаружены парамагнитные центры тетрагональной симметрии со спиновым моментом S = 7/2. В X- и Q-диапазонах наблюдаются электронные переходы между состояниями крамерсовского дублета $|\pm 1/2\rangle$. В спектрах ЭПР обнаруженных центров видна лигандная сверхтонкая структура (ЛСТС), соответствующая взаимодействию электронного магнитного момента центра с восьмью эквивалентными лигандами. Большая величина спинового момента, значительная анизотропия магнитных свойств и характерная ЛСТС указывают на то, что обнаруженный центр представляет собой димер Fe^{1.5+}–Fe^{1.5+}, в котором два иона железа связаны суперобменом. Предполагается, что до облучения кристалла этот димер находился в состоянии Fe³⁺(3d⁵)–Fe⁺(3d⁷).

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 04-02-16616).

Примесные центры железа в кристаллах структурного типа флюорита изучались несколькими группами исследователей. Авторы работ [1,2] методом ЭПР изучали кристаллы CdF2: Fe и CaF2: Fe. На частоте 9.3 GHz при T = 4.2 K они наблюдали спектры ЭПР парамагнитных центров тетрагональной симметрии. Эти спектры были приписаны электронным переходам $|M_S=+2
angle \leftrightarrow |M_S=-2
angle$ в комплексах примесных ионов $Fe^{2+}(3d^6, {}^5D)$, обладающих эффективным электронным спиновым моментом S = 2. Авторы [1,2] предполагали, что другие ЭПР-переходы не реализуются из-за больших начальных расщеплений, возникающих в системе спиновых уровней энергии комплекса вследствие статического эффекта Яна-Теллера. Кристаллы CdF₂: Fe изчались также методами оптической спектроскопии в [3,4] и методами мессбауэровской спектроскопии в [5,6]. В этих работах было показано, что эффект Яна-Теллера проявляется существенно сильнее на возбужденном орбитальном триплете ${}^{5}T_{2g}$ кубического комплекса $[FeF_8]^{-6}(O_h)$, образовавшегося в кристалле CdF₂: Fe в процессе его легирования. Кроме комплексов одиночных примесных ионов Fe²⁺ в работе [6] сообщается также о комплексах одиночных ионов Fe^{3+} , ассоциированных с дефектами зарядовой компенсации, и о димерах ионов Fe²⁺. Отмечено, что последние содержатся в большем количестве в образцах CdF₂ : Fe с высоким содержанием примесного железа. Как оказалось [6], концентрация примесных димеров железа значительно отклоняется от пуассоновского распределения. Этот факт, очевидно, свидетельствует об энергетической выгодности конденсации одиночных центров железа в димеры.

В настоящей работе представлены результаты изучения методом ЭПР кристаллов BaF₂ : Fe. Как показано в наших предварительных исследованиях [7], коэффициенты диффузии примесных ионов железа в кристаллах BaF_2 при температурах, близких к температуре их плавления, являются столь высокими, что позволяют осуществлять синтез примесных кластеров с регулярной структурой. Так же как и в CdF_2 : Fe [6], в исследуемых здесь кристаллах обнаружена тенденция к конденсации комплексов одиночных ионов железа в многоядерные кластеры. Но случай, рассмотренный в настоящей работе, отличается от [6] тем, что синтез примесных кластеров оказывается возможным не только в порошковых, но и в монокристаллических образцах. Это открывает огромные возможности для изучения структуры и магнитных свойств синтезируемых кластеров наиболее информативным методом — методом ЭПР.

1. Эксперимент и его результаты

Кристаллы BaF_2 : Fe выращены методом Бриджмена в графитовых тиглях в атмосфере гелия, содержащего примесь фтора. Примесь вводилась в виде мелкодисперсного порошка металла. Градиент температуры в области фронта кристаллизации составлял 10 deg/mm. Исследования выращенных образцов выполнены методом ЭПР в X- и Q-диапазонах при температурах 4.2 и 77–80 К. Было установлено, что в выращенных (но необлученных) образцах кристаллов BaF_2 : Fe с концентрацией примесного железа 0.2 mol.% при температуре 4.2 К наблюдаются спектры ЭПР по крайней мере двух типов центров с целочисленным спиновым моментом и тетрагональной симметрией магнитных свойств. Линии этих спектров не имеют сверхтонкой структуры и при температурах 77 К и выше не регистрируются.

После облучения образцов рентгеновскими лучами (при комнатной температуре в течение 30 min) кроме

Рис. 1. Спектры ЭПР парамагнитных центров типа III в кристалле BaF_2 : Fe, ориентированных относительно вектора постоянного внешнего магнитного поля различным образом. $a - \langle 001 \rangle \parallel \mathbf{B}_0 \parallel Z$, $b - \langle 010 \rangle \parallel \mathbf{B}_0 \perp Z$, $c - \langle 100 \rangle \parallel \mathbf{B}_0 \perp Z$. T = 4.2 K, $\nu_{\text{EPR}} = 37.1$ GHz.

указанных выше спектров появляются спектры трех типов центров, обладающих спиновыми моментами с полуцелым значением. При облучении образцов интенсивности линий центров с целочисленными спиновыми моментами заметно убывают. Все новые (радиационные) центры имеют разрешенную лигандную сверхтонкую структуру (ЛСТС). Установлено [7], что два типа радиационных центров образованы одиночными примесными ионами $\mathrm{Fe}^{3+}(3d^5, {}^6S)$, ассоциированными с компенсатором избыточного положительного заряда (междоузельным ионом фтора). Различия их магнитных свойств обусловлены различием во взаимном расположении иона Fe^{3+} и компенсатора заряда.

В настоящей работе наибольший интерес вызывали центры третьего типа (III). В некоторых образцах концентрация центров типа III оказалась выше концентрации центров одиночных примесных ионов Fe³⁺. Резонансное магнитное поле центральной линии группы, представляющей спектр ЭПР магнитно-эквивалентных центров типа III, изменяет свое значение в очень широких пределах при поворотах вектора В₀ в плоскостях кристалла (110) и (001). Минимальным значениям резонансного магнитного поля в Х- и Q-диапазонах при $T = 77 \, \text{K}$ соответствуют эффективные *g*-факторы, равные 8.243 (в X-диапазоне) и 8.224 (в Q-диапазоне). Максимальному значению резонансного магнитного поля соответствует эффективный g-фактор, равный 2.002 (в Х- и О-диапазонах). Наблюдаются одновременно три магнитно-неэквивалентных ансамбля центров типа III. В их спектрах ЭПР обнаруживается ЛСТС (рис. 1), явно указывающая на лигандное сверхтонкое взаимодействие (ЛСТВ) с магнитными ядрами восьми эквивалентных ионов фтора ($I_{\rm F} = 1/2$). Графики угловых зависимостей величин резонансных магнитных полей центральных линий спектров ЭПР трех групп магнитнонеэквивалентных центров типа III в кристалле BaF_2 : Fe показаны на рис. 2. Кривые I-4 представляют положения центра тяжести группы невырожденных линий ЭПР, а кривая 5 — группы двухкратно вырожденных линий. Углы ϑ_1 определяют ориентацию вектора постоянного внешнего магнитного поля (\mathbf{B}_0) при его вращениях в одной из кристаллографических плоскостей образца (001), а углы ϑ_2 соответствуют одной из плоскостей (110). Вид этих кривых дает основание для утверждения, что симметрия рассматриваемых центров тетрагональная.

Рис. 2. Угловые зависимости величин резонансных магнитных полей центральных линий спектров ЭПР трех групп магнитнонеэквивалентных центров типа III в кристалле BaF_2 : Fe. T = 4.2 K, $v_{EPR} - 37.1$ GHz.

Обсуждение экспериментальных результатов

Учитывая значение компонент эффективного тензора $\mathbf{g}^{\mathrm{eff}}$ ($g_{\parallel}^{\mathrm{eff}}=2.002$ и $g_{\perp}^{\mathrm{eff}}=8.243$) и форму кривых 1-5на рис. 2, можно сделать вывод о значении спинового момента центра типа III. Прежде всего представляется очевидным, что спиновый момент центра имеет полуцелое значение и наблюдается спектр, отвечающий ЭПР-переходам между состояниями $|M_S = +1/2\rangle$ и $|M_S = -1/2\rangle$. Ясно также и то, что начальное расщепление спиновых уровней намного больше кванта, соответствующего *Q*-диапазону ЭПР-спектрометра. Можно показать, что значение спинового момента центра типа III не может быть меньше S = 5/2. Более того, есть основание утверждать, что наиболее вероятным значением является 7/2. Действительно, влияние состояний $|M_S = \pm 3/2 \rangle$, $|M_S = \pm 5/2 \rangle$ и т.д. на магнитные свойства крамерсовского дублета $|\pm 1/2\rangle$ при большой величине начального расщепления обычно сводится к приблизительному удвоению (при S = 3/2), утроению (при S = 5/2) или учетверению (при S = 7/2) истинного значения g_{\perp} . Очевидно, что значение $g_{\perp}^{\text{eff}} = 8.243$ практически нереально при S = 3/2 (пришлось бы предположить, что значение истинного g_{\perp} больше 4). Если предполагать S = 5/2, необходимо объяснять причину большой анизотропии электронного зеемановского взаимодействия (так как в этом случае истинное значение g_{\perp} должно быть приблизительно равно 2.7). Но это очень трудно объяснить, по крайней мере до тех пор, пока мы имеем в виду один примесный ион Feⁿ⁺ в окружении восьми эквивалентных ионов фтора (здесь *n* — нечетное целое число). Кроме того, необходимо учитывать и экспериментальную статистику, связанную с легированием ионных кристаллов. С точки зрения этой статистики кажется маловероятным, что эффективный заряд иона Fe^{*n*+} может существенно отличаться от заряда замещаемого им иона Ba²⁺ (величина заряда которого близка к 2+), поскольку в таком случае энергия решетки должна сильно возрасти.

Рассмотрим высказанные выше соображения подробнее. Из числа возможных вариантов прежде всего упомянем ион Fe³⁺, находящийся в основном состоянии с электронной конфигурацией 3d⁵. В свободном состоянии его основной терм — ⁶S, полный спиновый момент — S = 5/2. Поскольку орбитальный момент свободного иона Fe³⁺ практически равен нулю, нет оснований ожидать больших отклонений g | от значения 2.0023. Таким образом, вариант с Fe³⁺ в состоянии $3d^{5}(^{6}S)$ исключается. Теперь допустим, что в кристалле примесный ион Fe³⁺ оказался в состоянии с электронной конфигурацией $3d^44s$. Предположим, что правило Хунда выполняется. В таком случае в качестве основного, скорее всего, будет выступать терм ⁶D. Поскольку в кубическом кристаллическом поле основным окажется орбитальный дублет ${}^{6}E_{g}$, в образовавшемся примесном комплексе возможен статический эффект Яна-Теллера, связанный с взаимодействием примесного иона с ядерными колебаниями тетрагональной симметрии. Однако величина спин-орбитального взаимодействия в ионе $Fe^{3+}(3d^44s)$ вряд ли окажется намного больше чем 100 cm^{-1} , это взаимодействие будет оказывать влияние на состояние основного дублета ${}^{6}E_{g}$ лишь во втором порядке теории возмущений. По этой причине значение $g_{\perp} = 2.7$ кажется маловероятным. Кроме того, в таком случае необходимо иметь в виду статический эффект Яна-Теллера. Одно из его проявлений состоит в том, что восемь лигандов иона железа становятся неэквивалентными (что противоречит наблюдениям).

Рассмотрим возможность реализации спинового момента S = 7/2. Здесь следует подчеркнуть, что для ионов группы железа такая величина полного спинового момента кажется невозможной. Однако существует небольшая вероятность того, что под влиянием кристаллического поля в качестве основного состояния иона Fe⁺ может выступать электронная конфигурация $3d^{5}4s4p$ с параллельной ориентацией спинов электронов. Само по себе одновалентное состояние примесного иона железа в кристаллах не является неожиданностью. Но вероятность того, что предполагаемая конфигурация в кристаллическом поле окажется основной, повидимому, низка. Хотя в работах [8,9] показано, что для иона Mn⁺ в кристаллах CaF₂ и SrF₂ реализовалась основная конфигурация $3d^54s$ со спиновым моментом S = 3, более вероятным кажется предположение о том, что центр типа III является обменно-связанной парой $Fe^{2+}(3d^6)$ – $Fe^+(3d^7)$. Рассмотрим это предположение. Известно, что для свободного иона Fe²⁺ основным является терм ⁵D. В кубическом поле основным оказывается орибатальный дублет 5E_g , поэтому возможен статический эффект Яна-Теллера. Поскольку оператор спин-орбитального взаимодействия не имеет матричных элементов в пределах представления ${}^{5}E_{g}$, в результате статического эффекта Яна-Теллера может образоваться система из пяти основных уровней, отделенных большим энергетическим интервалом от остальных состояний иона Fe²⁺. Как известно, магнитные свойства такой системы уровней могут быть описаны эффективным спиновым моментом $S_{\rm eff}=2$ и спиновым гамильтонианом тетрагональной симметрии.

Для свободного иона Fe⁺($3d^7$) основным должет быть терм ⁴F. В кубическом поле этот терм расщепляется так, что основным оказывается орбитальный синглет ⁴A₂. В этом случае эффективность вибронных взаимодействий не может быть высокой. Поэтому четыре основных состояния, определяемые проекциями полного спинового момента S = 3/2, образуют спиновый квартет. Под влиянием осевой компоненты кристаллического поля, индуцируемого соседним ионом Fe²⁺, этот квартет окажется расщепленным на два крамерсовских дублета: $|M_S = \pm 1/2\rangle$ и $|M_S = \pm 3/2\rangle$. Таким образом, в стационарных условиях низкотемпературные магнитные

Рис. З. Молекулярная структура димера $Fe^{1.5+}-Fe^{1.5+}$ в кристалле BaF_2 : Fe.

свойства пары $Fe^{2+}(3d^6)$ – $Fe^+(3d^7)$ приближенно могут быть описаны спиновым гамильтонианом

$$\mathbf{H}_{S} = \mathbf{S}_{1} \cdot \mathbf{J} \cdot \mathbf{S}_{2} + \beta_{e} \mathbf{S}_{1} \cdot \mathbf{g}_{1} \cdot \mathbf{B}_{0} + B_{2}^{0} \mathbf{O}_{2}^{0}(\mathbf{S}_{1}) + \beta_{e} \mathbf{S}_{2} \cdot \mathbf{g}_{2} \cdot \mathbf{B}_{0} + B_{2}^{0} \mathbf{O}_{2}^{0}(\mathbf{S}_{2}), \qquad (1)$$

где **S**₁ и **S**₂ — операторы электронных спиновых моментов фрагментов примесного димера (образованного отдельными ионами Fe²⁺(3d⁶) и Fe⁺(3d⁷) с S₁ = 2 и S₂ = 3/2 соответственно), **J** — тензор обменного взаимодействия между фрагментами пары, g₁ и g₂ тензоры электронного зеемановского взаимодействия фрагментов пары с внешним магнитным полем, β_e магнетон Бора, **B**₀ — вектор внешнего магнитного поля, $O_2^0(S_1)$ и $O_2^0(S_2)$ — спиновые операторы Стивенса.

Полученные нами экспериментальные факты свидетельствуют о том, что обменное взаимодействие в димере имеет ферромагнитную природу и оно значительно больше взаимодействия с внешним магнитным полем. Основными в димере оказались восемь состояний, трансформационные свойства которых приближенно описываются полным спиновым моментом S = 7/2. Представленные на рис. 1 спектры ЭПР указывают также на то, что электронное состояние исследуемого димера $Fe^{2+}(3d^6)$ – $Fe^+(3d^7)$ не является стационарным. Действительно, поскольку кристалл BaF₂ кубический, вследствие перескока электрона с иона Fe⁺ на ион Fe²⁺ может быть реализовано энергетически эквивалентное состояние димера (т.е. состояние $Fe^+(3d^7)-Fe^{2+}(3d^6)$). По-видимому, барьер, препятствующий переносу электрона с одного фрагмента димера на другой, оказался недостаточно высоким, поэтому частота перескоков электрона оказалась выше частоты ЭПР. Это привело к тому, что в спектрах ЭПР наблюдается усредненная картина, в которой оба примесных иона (фрагменты димера) находятся в валентных состояниях 1.5+ (в состояниях со смешанной валентностью), а молекулярная структура димера обладает симметрией D_{4h}. В этом случае шестнадцать ионов фтора, относящихся к первым координационным сферам двух ионов железа, разделяются на две группы (в каждой по восемь эквивалентных ионов F⁻). Очевидно, что связь между ионами железа в димере привела к тому, что они сместились навстречу друг другу. ЛСТВ с одной группой лигандов оказалось сильнее взаимодействия с другой группой. В результате ЛСТС, соответствующая ЛСТВ с группой более удаленных лигандов, не разрешается и наблюдается разрешенная ЛСТС, обусловленная взаимодействием лишь с одной восьмеркой лигандов.

Таким образом, эквивалентность восьми ионов фтора в ориентациях $\langle 001 \rangle \parallel \mathbf{B}_0 \parallel Z$ и $\langle 010 \rangle \parallel \mathbf{B}_0 \perp Z$ при полуцелом спиновом моменте явно указывает на то, что ионы примесной пары быстро обмениваются электронами и каждый акт такого обмена (суперобмена) соответствует туннельному переходу этой пары из одной ямы адиабатического потенциала (отвечающей состоянию $\mathrm{Fe}^{2+}(3d^6)-\mathrm{Fe}^+(3d^7)$) в противоположную (соответствующую состоянию $\mathrm{Fe}^+(3d^7)-\mathrm{Fe}^{2+}(3d^6)$). Следовательно, усредненная молекулярная структура радиационного димера $\mathrm{Fe}^{1.5+}-\mathrm{Fe}^{1.5+}$ может быть представлена в виде, показанном на рис. 3 (на этом рисунке утолщенными линиями изображены связи ионов железа с теми лигандами, ЛСТВ с которыми обнаруживается в спектрах ЭПР).

Выше отмечалось, что в кристалле существуют центры тетрагональной симметрии с целочисленным спиновым моментом, облучение которых вызывает образование исследуемых центров типа III. Если наша интерпретация центров типа III верна, то один из ансамблей центров с целочисленным моментом соответствует примесной паре Fe³⁺-Fe⁺. Высокая концентрация таких пар в кристалле объяснима, кулоновское взаимодействие нескомпенсированных зарядов двух отдельных центров (Fe³⁺ и Fe⁺) должно явиться хорошим стимулом для образования такой примесной пары. В качестве примера энергетической выгодности образования пар из примесных центров с нескомпенсированными зарядами противоположного знака мы можем привести димеры ионов титана в кристаллах SrF2 : Ті [10]. В некоторых образцах кристаллов SrF2: Ті концентрация димеров титана оказывалась в десятки раз выше концентрации центров одиночных ионов титана.

Список литературы

- M.M. Зарипов, В.С. Кропотов, Л.Д. Ливанова, В.Г. Степанов. ФТТ 9, 10, 2983 (1967).
- [2] М.М. Зарипов, В.С. Кропотов, Л.Д. Ливанова, В.Г. Степанов. Парамагнитный резонанс (1944–1969). Наука, М. (1971). С. 95–103.
- [3] W. Ulrici. Phys. Stat. Sol. (b) 44, K29 (1971).
- [4] W. Ulrici. Phys. Stat. Sol. (b) 62, 431 (1974).
- [5] Y. Sato. Phys. Stat. Sol. (b) 82, 611 (1977).
- [6] J. Steger, E. Kostiner. J. Chem. Phys. 58, 8, 3389 (1973).
- [7] Е.П. Жеглов, В.А. Уланов, М.М. Зарипов, Е.Р. Житейцев, Г.С. Шакуров, В.Ф. Тарасов. Тез. XXXIII Совещ. по физике низких температур. Екатеринбург (2003). С. 252.
- [8] П.Г. Баранов. ФТТ **22**, 229 (1980).
- [9] P.J. Alonso, R. Alcala. Phys. Stat. Sol. (b) 127, K77 (1985).
- [10] И.И. Фазлижанов, В.А. Уланов, М.М. Зарипов, Р.М. Еремина. ФТТ 44, 8, 1483 (2002).