Краткие сообщения

06;08

Аномальный резистоакустический эффект в структуре пьезоэлектрик-проводящая жидкость

© Б.Д. Зайцев,¹ И.Е. Кузнецова,¹ С.Г. Джоши²

¹ Саратовское отделение Института радиотехники и электроники РАН, 410019 Саратов, Россия ² Marquette University, Milwaukee, WI 53201-1881, USA e-mail: zaitsev@ire.san.ru

(Поступило в Редакцию 3 июля 2000 г.)

Теоретически предсказано существование аномального резистоакустического эффекта при распространении поверхностной акустической волны Гуляева–Блюстейна в структуре пьезоэлектрик–проводящая жидкость. Обнаружено, что с ростом проводимости жидкости скорость волны увеличивается, достигает максимума, а затем уменьшается. Величина положительного изменения скорости волны растет с уменьшением диэлектрической проницаемости жидкости ε^{lq} и может достигать 6% для ниобата калия при $\varepsilon^{lq} = 2.5$. Показано, что существует критическое значение локализации волны, при превышении которого аномальный резистоакустический эффект в такой структуре исчезает.

Как известно [1], нормальный резистоакустический эффект заключается в том, что при увеличении проводимости тонкого поверхностного слоя, нанесенного на пьезоэлектрик, скорость поверхностных акустических волн монотонно уменьшается и величина максимального изменения скорости $(\Delta v/v)$ однозначно связана с коэффициентом электромеханической связи волны. Что касается внесенного затухания как функции проводимости, то оно имеет характерный максимум и обращается в нуль, когда слой близок к идеальному диэлектрику или проводнику. Аналогичные зависимости наблюдались в структуре пьезоэлектрик-проводящая жидкость [2]. Однако недавно было теоретически предсказано [3], что в случае слабонеоднородных акустических волн, таких как волна Гуляева-Блюстейна и волна Лява, существует интервал проводимости тонкого поверхностного слоя, в котором скорость этих волн вначале увеличивается, достигает максимума, а затем уменьшается. Этот эффект, названный аномальным резистоакустическим эффектом, может существовать во всех пьезоэлектриках, причем величина максимального положительного изменения скорости растет с увеличением коэффициента электромеханической связи материала. Было установлено, что аномальный резистоакустический эффект существует, если глубина локализации поверхностной волны превышает некоторое критическое значение [3]. Поэтому указанный эффект не наблюдается для сильно локализованной поверхностной волны Рэлея [1,3]. Что касается внесенного затухания, то его поведение ничем не отличается от случая нормального резистоакустического эффекта. Интервал проводимостей, соответствующий значительному положительному изменению скорости, оказался столь узким, что в нашей работе [4], посвященной исследованию влияния тонких проводящих слоев на характеристики акустических волн в ниобате калия, мы его попросту не заметили.

По всей видимости, аномальный эффект может существовать и в других ситуациях с проводящими слоями, влияющими на глубину локализации слабонеоднородных волн, распространяющихся в пьезоэлектриках. С этой точки зрения особый интерес представляют поверхностные акустические волны, распространяющиеся вдоль границы пьезоэлектрик-проводящая жидкость, теоретическому изучению которых и посвящена настоящая работа.

Проанализируем распространение акустической волны в структуре пьезоэлектрик–проводящая жидкость. Направим ось x_3 в глубь пьезокристалла, который занимает полупространство $x_3 > 0$, а жидкость в этом случае пусть находится в области $x_3 < 0$. Запишем уравнения движения для пьезоэлектрической среды и жидкости

$$\rho^{s} \frac{\partial^{2} u_{i}^{p}}{\partial^{2} t} = \frac{\partial T_{ij}^{p}}{\partial x_{j}}, \quad \rho^{lq} \frac{\partial^{2} u_{i}^{lq}}{\partial^{2} t} = \frac{\partial T_{ij}^{lq}}{\partial x_{j}}, \qquad (1), (2)$$

где u_i^p , u_i^{lq} — смещение частиц; x_j — пространственные координаты; t — время; T_{ij}^p , T_{ij}^{lq} — механическое напряжение; ρ^p , ρ^{lq} — плотность; индексы p и lq относятся к пьезоэлектрической среде и жидкости соответственно.

Запишем уравнение Лапласа для пьезоэлектрической среды, а также уравнение Пуассона и сохранения электрического заряда для проводящей жидкости

div
$$\mathbf{D}^{p} = 0$$
, div $\mathbf{D}^{lq} = \delta^{lq}$, $\frac{\partial J_{i}^{lq}}{\partial x_{i}} + \frac{\partial \delta^{lq}}{\partial t} = 0$. (3)–(5)

Здесь \mathbf{D}^{p} , \mathbf{D}^{lq} — электрическая индукция; δ^{lq} — плотность объемного заряда; J_{i}^{lq} — *i*-я компонента плотности

электрического тока. И наконец, запишем материальные уравнения для анизотропной пьезоэлектрической среды

$$T_{ij}^{p} = C_{ijkl}^{p} \frac{\partial^{2} u_{l}^{p}}{\partial x_{k}} + e_{kij}^{p} \frac{\partial \Phi^{p}}{\partial x_{k}}, \qquad (6)$$

$$D_{j}^{p} = -\varepsilon_{jk}^{p} \frac{\partial \Phi^{p}}{\partial x_{k}} + e_{jlk}^{p} \frac{\partial u_{l}^{p}}{\partial x_{k}}$$
(7)

и для изотропной жидкости

$$T_{ij}^{lp} = C_{ijkl}^{lq} \frac{\partial^2 u_l^{lq}}{\partial x_k},\tag{8}$$

$$D_j^{lq} = -\varepsilon^{lq} \frac{\partial \Phi^{lq}}{\partial x_i},\tag{9}$$

$$J_i^{lq} = -\sigma^{lq} \, \frac{\partial \Phi^{lq}}{\partial x_i} + d^{lq} \, \frac{\partial \delta^{lq}}{\partial x_i},\tag{10}$$

где Φ^p , Φ^{lq} — электрический потенциал; C^p_{ijkl} , C^{lq}_{ijkl} — упругие постоянные; e^p_{kij} — пьезоконстанты; ε^p_{jk} , ε^{lq} — диэлектрическая проницаемость; σ^{lq} — объемная проводимость; d^{lq} — коэффициент диффузии.

Механические граничные условия на границе раздела в предположении отсутствия вязкости жидкости, учитывающие непрерывность только нормальных компонент смещения и механического напряжения, были записаны в следующей форме:

$$u_3^p = u_3^{lq}, \quad T_{13}^p = T_{23}^p = 0, \quad T_{33}^p = T_{33}^{lq}.$$
 (11)

Соответствующие электрические граничные условия в предположении отсутствия поверхностного заряда и нормальной компоненты тока проводимости на границе раздела имели следующий вид:

$$\Phi^p = \Phi^{lq} = \Phi_0, \quad D_3^p = D_3^{lq}, \quad J_3^{lq} = 0, \qquad (12)$$

где Φ_0 — потенциал в плоскости $x_3 = 0$.

Для решения указанных уравнений совместно с граничными условиями использовался метод, аналогичный описанному в [5]. В качестве пьезоэлектрика был выбран ниобат калия, который обладает сильным пьезоэффектом [6]. Необходимые для расчета материальные константы были взяты из [7]. Анализ показал, что для волны Рэлея при изменении упругих и электрических свойств жидкости в широких пределах всегда наблюдается нормальный резистоакустический эффект. Аномальный резистоакустический эффект был обнаружен в случае волны Гуляева-Блюстейна, которая распространяется вдоль оси Х на У-срезе ниобата калия [8]. В этом случае упругие свойства жидкости не влияют на характеристики волны. Поэтому было исследовано влияние диэлектрической проницаемости и проводимости жидкости на скорость и затухание волны Гуляева-Блюстейна.

На рис. 1 представлены зависимости затухания (*a*) и относительного изменения скорости (*b*) волны Гуляева– Блюстейна от проводимости жидкости для различных

Рис. 1. Зависимости затухания (*a*) и относительного изменения скорости (*b*) волны Гуляева–Блюстейна от проводимости жидкости для $\varepsilon^{lq} = 80$ (*1*), 20 (*2*), 2.5 (*3*) и для частот 1 (сплошная кривая), 50 (пунктир), 500 MHz (штриховая кривая).

значений ее диэлектрической проницаемости ε^{lq} и частоты акустической волны. Из рис. 1, а видно, что затухание волны ведет себя традиционным образом и с уменьшением диэлектрической проницаемости жидкости оно возрастает. Это связано с увеличением эффективного коэффициента электромеханической связи при уменьшении диэлектрической проницаемости жидкости [9]. Что касается скорости акустической волны (рис. 1, b), то с ростом проводимости она увеличивается, достигая максимума, а затем падает, т.е. наблюдается ярко выраженный аномальный резистоакустический эффект. Видно, что с уменьшением диэлектрической проницаемости максимальная величина положительного изменения скорости $(\Delta v/v)^+_{\rm max}$ увеличивается и может достигать 6% при $\varepsilon^{lq} = 2.5$. Следует также отметить, что с увеличением частоты акустической волны область проводимости σ^{lq} , в которой наблюдается аномальный резистоакустический эффект, смещается в сторону больших значений проводимости жидкости.

На рис. 2 представлены зависимости нормированной амплитуды электрического потенциала в ниобате калия

Рис. 2. Зависимости нормированной амплитуды электрического потенциала волны Гуляева–Блюстейна в ниобате калия от координаты x_3 , для нормированной на длину волны для $\varepsilon^{lq} = 80$ (1), $\varepsilon^{lq} = 20$ (2), $\varepsilon^{lq} = 2.5$ (3) и для $\sigma^{lq} = \sigma_1$ (a), $\sigma^{lq} = \sigma_{\text{max}}^{lq}$ (b), $\sigma^{lq} = \sigma_2$ (c).

от координаты x₃, нормированной на длину волны при различных значениях диэлектрической проницаемости и проводимости жидкости для частот 1 MHz. Изменение потенциала с глубиной было рассчитано для проводимостей жидкости σ_1 (*a*), σ_{\max} (*b*) и σ_2 (*c*) соответствующих следующим значениям относительного изменения скорости $(\Delta v/v)_{\text{max}}^+/2$, $(\Delta v/v)_{\text{max}}^+$ и $-(\Delta v/v)_{\text{max}}^+$ соответственно. При этом для σ_2 резистоакустический эффект становится нормальным. Таким образом, рис. 2 показывает, что, как и в случае структуры с тонким проводящим слоем [3], существует критическое значение локализации волны, при превышении которого аномальный резистоакустический эффект исчезает. При этом глубина проникновения волны увеличивается с ростом диэлектрической проницаемости жидкости. Следует также отметить, что зависимость амплитуды потенциала от координаты x₃ имеет осциллирующий характер, что находится в хорошем соответствии с работой [8]. С ростом проводимости жидкости амплитуда пульсаций уменьшается.

Таким образом, в работе показано, что в случае распространения слабонеоднородных волн в пьезокристалле, граничащем с проводящей жидкостью, возможно существование аномального резистоакустического эффекта. Этот эффект является фундаментальным свойством слабонеоднородных поверхностных акустических волн и может служить критерием, позволяющим на практике распознавать волны указанного типа.

Материалы статьи получены при поддержке гранта РФФИ (№ 01-02-16266) и гранта National Science Foundation (USA).

Список литературы

- Wixforth A., Scriba J., Wassermeier M. et al. // Phys. Rev. B. 1989. Vol. 40. N 11. P. 7874–7887.
- [2] Furukawa S., Obaba M., Nomura T. // IEEE Ultrasonic Symp. 1996. P. 599–602.
- [3] Zaitsev B.D., Kuznetsova I.E., Joshi S.G. // J. Appl. Phys. 1999. Vol. 86. N 12. P. 6868–6874.
- [4] Гуляев Ю.В., Кузнецова И.Е., Зайцев Б.Д. и др. // Письма в ЖТФ. 1999. Т. 25. Вып. 8. С. 21–26.
- [5] Зайцев Б.Д., Кузнецова И.Е., Нефедов И.С. // Письма в ЖТФ. 1994. Т. 20. Вып. 4. С. 60–64.
- [6] Yamanouchi K., Odagawa H., Kojimi T. et al. // Electron. Lett. 1997. Vol. 33. N 3. P. 193–194.
- [7] Zgonik M., Schlesser R., Biaggio I. et al. // J. Appl. Phys. 1993. Vol. 74. N 2. P. 1287–1297.
- [8] Nakamura K., Oshiki M. // Appl. Phys. Lett. 1997. Vol. 71. N 22. P. 3203–3205.
- [9] Дьелесан Э., Руайе Д. Упругие волны в твердых телах. М.: Наука, 1982. 424 с.