Краткие сообщения

05;06;10;12

Аномальное поведение ионов мышьяка в кремнии, имплантируемых при 850°С

© К.Д. Демаков, В.А. Старостин

Российский научный центр "Курчатовский институт", 123182 Москва, Россия E-mail: vastarostin@mail.ru

(Поступило в Редакцию 3 мая 2000 г. В окончательной редакции 26 сентября 2000 г.)

Получен профиль концентрации мышьяка в кремнии с двумя глубоко залегающими максимумами. Предложена модель процесса имплантации. Проведено сравнение с результатами других групп. Показана аналогия при миграции пар дефект-вакансия для случаев высокотемпературной и низкотемпературной имплантации (D_{dy} около 10^{-12} cm²/s).

Введение

Важное теоретическое и прикладное значение имеет исследование характера поведения различных примесных ионов, имплантируемых в полупроводниковые материалы, в зависимости от плотности тока, температуры среды, времени излучения, энергии иона и химических свойств взаимодействующих веществ. В данной работе нами исследовался процесс имплантации ионов мышьяка в кремниевую мишень при высокой температуре (850°C, $49 \text{ keV}, 40 \mu \text{A/cm}^2$).

Эксперимент

Опыты по облучению проводились на ионнолучевом ускорителе ИЛУ-3 [1]. Для нагрева мишени в процессе облучения был разработан специальный высокотемпературный приемник ионов. В качестве мишени был выбран монокристаллический кремний. Имплантация проводилась ионами мышьяка с энергией 40 keV, дозой $2 \cdot 10^{17}$ ion/cm². Распределение внедренных атомов по глубине исследовалось методом рентгеноструктурного анализа с послойным травлением. Измеренный профиль концентрации приведен на рисунке. В отличие от стандартной ситуации он содержит два глубоко залегающих максимума (см. рисунок).

Теоретическая модель

Для объяснения дрейфа примеси на глубину, сильно превышающую ее пробег при имплантации, была применена модифицированная в [2] модель В.В. Белошицкого для этого процесса [3]. Кроме диффузионного переноса предполагается захват примеси вакансиями. Заметим, что чисто диффузионное уравнение при наличии источника не дает решения с максимумом, расположенным дальше пробега ионов источника от границы. Важным моментом модели является ее неравновесность — диффузия происходит на фоне интенсивного рождения и аннигиляции дефектов. Эти процессы описываются следующей системой связанных уравнений:

$$\partial n_a / \partial t = D_a \partial^2 n_a / \partial x^2 - n_a n_v k_{cap} + n_c n_d k_{act} + j_0 \exp\left(-(R_p - x + x_0)^2 / 2\Delta R_p^2\right) / \sqrt{2\pi} \Delta R_p, \quad (1)$$

$$\partial n_c / \partial t = n_a n_v k_{cap} - n_c n_d k_{act}, \tag{2}$$

$$\partial n_d / \partial t = D_{dv} \partial^2 n_d / \partial x^2 - n_c n_d k_{act} - n_v n_d k_{ann}$$

+ $j_0 N \sigma_d \Theta(R_p - x + x_0),$ (3)

$$\partial n_{\nu} / \partial t = D_{d\nu} \partial^{2} n_{\nu} / \partial x^{2} - n_{a} n_{\nu} k_{cap} - n_{\nu} n_{d} k_{ann} + j_{0} N \sigma_{d} \Theta (R_{p} - x + x_{0}),$$

$$x_{0} = -v_{b} t, \qquad N = 5.04 \cdot 10^{22} \,\mathrm{cm}^{-3}, \sigma_{d} = 3.52 \cdot 10^{-16} \,\mathrm{cm}^{2}, \qquad (4)$$

где $\Theta(x)$ — единичная ступенька; N — плотность ядер кремния; σ_d — ориентировочное сечение образования дефекта; R_p и ΔR_p — пробег иона и его разброс; D_a , D_{dv} , k_{cap} , k_{act} , k_{ann} — свободные параметры модели с очевидным физическим смыслом коэффициентов диффузии примеси и дефектов и скоростей квазихимических реакций захвата примеси вакансиями, активации примеси междоузлиями и взаимной аннигиляции вакансий и междоузлий.

Условие на границе для примеси выбиралось нулевым исходя из эксперимента, что можно интерпретировать как ее испарение с поверхности образца. Для междоузлий и вакансий использовалось условие такое, чтобы поток междоузлий вызывал смещение границы вещества со скоростью *v_b* (задача типа Стефана). Начальные условия и условия на противоположной границе брались нулевые. Заметим, что в рамках вышеописанной модели можно описать экспериментальный профиль только двумя наборами свободных параметров. Система уравнений (1)–(4) при вышеописанных начальных и граничных условиях решалась численно на ЭВМ методом конечных разностей. Значения свободных параметров модели подбирались методом наименьших квадратов так, чтобы наилучшим образом соответствовать экспериментальным профилям. Результаты расчета приведены в табл. 1, 2.

Выводы

Сравнение с анализом результатов других групп

В [4] исследованы профили концентрации водорода в молекулярной и свободной формах, имплантируемых (600 eV, $2.5 \,\mu$ A/cm²) при 40 K методом резонансной ядерной реакции ¹H(¹⁵N, $\alpha\gamma$)¹⁵C. Нами получены одинаковые диффузионные коэффициенты для пар Френкеля

$D_a, \frac{\mathrm{cm}^2}{\mathrm{s}} \cdot 10^{-11}$	$D_{dv}, rac{{ m cm}^2}{ m s} \cdot 10^{-11}$
0.199	0.1070
53.630	0.1037

Таблица 🛛	2.
-----------	----

$k_{cap}, \frac{{ m cm}^3}{{ m s}} \cdot 10^{-23}$	$k_{act}, \frac{{\rm cm}^3}{{\rm s}} \cdot 10^{-23}$	$k_{ann}, \frac{\mathrm{cm}^3}{\mathrm{s}} \cdot 10^{-23}$
3.005	13.315	3.852
19.582	6.743	1.872

 $(0.107 \cdot 10^{-11} \text{ cm}^2/\text{s})$. Однако отметим существенно более высокую (в 76.21, 83387.1 и 12.194 раз) квазихимическую активность молекулярного водорода по сравнению с атомарным в реакциях захвата примеси, аннигиляции пар Френкеля и активизации примеси соответственно. Нами определены также коэффициенты диффузии молекулярного $(2.522 \cdot 10^{-11} \text{ cm}^2/\text{s})$ и свободного $(1.512 \cdot 10^{-11} \text{ cm}^2/\text{s})$ водорода в Si. Отметим численное совпадение низкотемпературного и высокотемпературного (табл. 1, 2) коэффициентов диффузии пар Френкеля в кремнии. Отметим также близость этих диффузионных коэффициентов к значению $0.101 \cdot 10^{-11} \, \text{cm}^2/\text{s}$, полученному нами по данным [5] об имплантации ионов дейтерия (27 keV, $400 \,\mu \text{A/cm}^2$) в алмазоподобные углеродные пленки при комнатной температуре. Близко и значение диффузионного коэффициента дейтерия в С $(2.612 \cdot 10^{-11} \text{ cm}^2/\text{s})$ к аналогичному для молекулярного водорода в кремнии. Близость свойств С и Si показана в [2].

Авторы благодарны О.Л. Головину за проведение измерений профиля концентрации.

Список литературы

- [1] Гусев В.М., Бушаров Н.П., Нафтулин С.М., Проничев А.М. // ПТЭ. 1969. № 4. С. 19–25.
- [2] Старостин В.А. // ФиХОМ. 1999. № 5. С. 104–105.
- [3] Aleksandrov P.A., Baranova E.K., Beloshitsky V.V. et al. // Radiation Effects. 1985. Vol. 88. P. 249–255.
- Fabian S., Kalbitzer S., Klatt Ch. et al. // Phys. Rev. B. 1998.
 Vol. 58. N 24. P. 16144–16153.
- [5] Ahlgren T., Vainonen E., Likonen J., Keinonen J. // Phys. Rev. B. 1998. Vol. 57. N 16. P. 9723–9726.