Квазилокальные примесные состояния в одноосно-сжатом *p*-Ge

© А.А. Абрамов, В.Н. Тулупенко[¶], Д.А. Фирсов*

Донбасская государственная машиностроительная академия, 84913 Краматорск, Украина * Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия

(Получена 28 апреля 2000 г. Принята к печати 21 июня 2000 г.)

Теоретически исследованы основные характеристики квазилокальных состояний, возникающих на мелком примесном центре (с экранированным кулоновским потенциалом) в одноосно-сжатом *p*-Ge. Вычислены зависимости положения и ширины квазилокальных примесных состояний от величины давления. Результаты численных расчетов представлены для примеси Ga.

Интерес к исследованию эффектов в одноосно-сжатом дырочном Ge вызван, прежде всего, обнаружением стимулированного излучени при совпадающих [1] и скрещенных [2] направлениях приложенного электрического поля и одноосного давления (ОД). Аналогичные результаты наблюдались в наноструктурах Si/GeSi p-типа [3], которые можно рассматривать как одноосно-сжатые в направлении роста из-за несоответствия постоянных решеток Ge и Si. В работе [4] (см. также [2] и [5]) экспериментально показано, что такая генерация излучения обусловлена инверсной заселенностью дырок двух примесных уровней, появляющихся в результате снятия вырождения состояния мелкой акцепторной примеси одноосным давлением. Один их этих уровней при изменении величины давления Х продолжает оставаться в запрещенной зоне, другой, при определенном X, попадает в непрерывный спектр и становится, таким образом, квазилокальным. Этот уровень частично заполняется дырками в результате резонансного рассеяния [6], тогда как уровень в запрещенной зоне опустошается в электрическом поле вследствие пробоя. Такая ситуация может привести к внутрицентровой инверсной заселенности дырок и, как следствие, к генерации излучения. Таким образом, для теоретического описания механизма инверсии должны быть известны основные характеристики квазилокальных примесных состояний (КПС) — положение по шкале энергий, уширение уровней и волновые функции — в зависимости от давления. Однако эта задача фактически до сих пор остается нерешенной. Например, положения и волновые функции примесных уровней для кулоновского потенциала могут быть рассчитаны в пределе малых или больших давлений [6,7], причем используемая при этом методика расчета не предполагает явной зависимости рассчитываемых величин от давления. Аналитические зависимости характеристик КПС от давления удалось получить в работах [8,9] в рамках модели потенциала нулевого радиуса (ПНР). Но, как показано в [9], модель ПНР соответствует решениям для кулоновского потенциала при относительно небольших давлениях, соответствующих расщеплению валентных подзон в точке p = 0импульсного пространства $\Delta < 20$ мэВ. В то же время

большое количество экспериментальных результатов по исследованию одноосно-деформированного p-Ge получено для области давлений, соответствующих значениям Δ вплоть до 60 мэВ. Описать их, как указывалось выше, не представляется возможным из-за отсутствия аналитических зависимостей изменения основных характеристик КПС с давлением, полученных для кулоновского потенциала. Настоящая работа является одной из первых попыток решения данной задачи.

Расчет основных характеристик кулоновских примесных состояний

Рассмотрим уравнение Шредингера, описывающее дырочные состояния на примесном центре:

$$(H_{\mathbf{p}} - E)\Psi_{\mathbf{p}}^{i} = -\sum_{\mathbf{p}'} U_{\mathbf{p}\mathbf{p}'}\Psi_{\mathbf{p}'}^{i},\qquad(1)$$

где $H_{\mathbf{p}}$ — гамильтониан Латтинжера, E — энергия связи КПС, 4-разрядный столбец $\Psi_{\mathbf{p}}^{i}$ описывает примесные состояния, $U_{\mathbf{pp}'}$ — матричный элемент примесного потенциала в импульсном представлении. Для экранированного кулоновского потенциала

$$U_{\mathbf{p}\mathbf{p}'} = \frac{\gamma}{V} \frac{1}{|\mathbf{p} - \mathbf{p}'|^2 + p_0^2},$$

 $\gamma = e^2 \hbar^2 / (\chi \chi_0), V$ — нормировочный объем, $p_0 = \hbar / r_0, e$ — заряд электрона, χ — диэлектрическая проницаемость, χ_0 — электрическая постоянная, r_0 — радиус экранирования Дебая. Используя функцию Грина $g_{\varepsilon}(p)$ для свободных дырок ($U_{pp'} \equiv 0$) [9,10], уравнение (1) можно записать в виде

$$\Psi_{\mathbf{p}} = -\frac{\gamma}{V} g_{\varepsilon}(\mathbf{p}) \sum_{\mathbf{p}} \frac{\Psi_{\mathbf{p}'}}{|\mathbf{p} - \mathbf{p}'|^2 + p_0^2},\tag{2}$$

где $\varepsilon = E + i0$. В модели ПНР $p_0 = p_a \approx h/r_a$ (r_a — постоянная кристаллической решетки) фактически совпадает с максимально возможными значениями p и p'и, учитывая $\Psi_p \propto g_{\varepsilon}(p) \propto p^{-2}$, знаменатель под знаком суммы можно считать не зависящим от p и p' и заменить

[¶] E-mail: tvn@laser.donetsk.ua

некоторым постоянным значением. Решение (2) в этом случае дается выражением $\Psi_{\mathbf{p}} = g_{\varepsilon}(\mathbf{p})N$ [9,10], где N — постоянная, представляющая собой 4-разрядный столбец. Для экранированного кулоновского потенциала $p_0 \ll p_a$, и найти решения (2) в общем виде достаточно сложно. Однако, используя тот факт, что положения КПС, рассчитанные в модели ПНР, удовлетворительно совпадают с решениями для кулоновского потенциала (при $\Delta < 20$ мэВ), выберем волновую функцию модели ПНР в качестве нулевого приближения в (2). Для дальнейшего проведения суммирования положим

И

$$\varepsilon_{\pm p} = \pm \Delta/2 + p^2/(2m_+^*),$$

 $g_{\varepsilon}(p) \approx 1/(\varepsilon_{-p} - E) + 1/(\varepsilon_{+p} - E)$

где ε_{+p} и ε_{-p} — энергии расщепленных давлением валентных подзон, m_{\pm}^* — усредненная по направлениям эффективная масса дырки в подзонах ε_{\pm} . Обозначим $(p^*)^2 = 2(\Delta/2 + E)m_{-}$. Анализ выражения, получающегося в результате подстановок указанных приближений в (2), показывает, что при $p > 2|p^*|$ значение суммы в (2) не зависит от p, а при 0 результат суммирования представляет собой немонотонную функцию р, максимальные значения которой превышают значение при $p = 2|p^*|$ приблизительно в 2 раза (см. вставку к рис. 1). Таким образом, зависимостью суммы в выражении (2) от *p* при $p > 2|p^*|$ можно пренебречь и заменить р под знаком суммы некоторым постоянным значением, после чего знаменатель будет представлять собой квадратичную функцию относительно р'. Аппроксимировав ее выражением $[\alpha(p')^2 + 1]\beta$, где α и *β* — параметры задачи, перепишем уравнение (2) для значений $p > 2|p^*|$:

$$\Psi_{\mathbf{p}} = -\frac{\gamma\beta}{V} g_{\varepsilon}(\mathbf{p}) \sum_{\mathbf{p}} \frac{\Psi_{\mathbf{p}'}}{\alpha(p')^2 + 1}.$$
 (3)

Полагая (3) справедливым для описания КПС во всей области значений *p*, получим

$$[1 + \lambda(E)] \sum_{\mathbf{p}'} \frac{\Psi_{\mathbf{p}}}{\alpha p^2 + 1} = 0,$$

$$\lambda(E) = \frac{\gamma \beta}{V} \sum_{\mathbf{p}} \frac{g_{\varepsilon}(\mathbf{p})}{\alpha p^2 + 1}.$$
 (4)

Определяемая соотношением (4) матрица λ оказывается диагональной, и энергия *E* и ширина Γ вырожденных по спину КПС находятся из уравнения

$$1 + \lambda_+(E) = 0, \tag{5}$$

где диагональные элементы $\lambda_{\pm}(\varepsilon)$ матрицы $\lambda(\varepsilon)$ имеют вид

$$\lambda_{\pm}(\varepsilon) = \frac{\gamma\beta}{V} \times \sum_{\mathbf{p}} \frac{\gamma_1 p^2 / 2m \pm P_2(p_z/p)\gamma p^2 / m \pm \Delta/2 - \varepsilon}{(\varepsilon_{+p} - \varepsilon)(\varepsilon_{-p} - \varepsilon)(\alpha p^2 + 1)}.$$
 (6)

Физика и техника полупроводников, 2001, том 35, вып. 2

Рис. 1. Положение экстремумов валентных подзон $(1 - \varepsilon_{+p}, 2 - \varepsilon_{-p})$ и примесного уровня E (3 -модель ПНР, 4 — кулоновский потенциал, 5 — расчет по формулам (5)-(6)) в зависимости от расщепления вершины валентной зоны Δ . На вставке — зависимость суммы в выражении (2) от величины $|p/p^*|$: 1 — уровень E в непрерывном спектре, 2 — уровень E в запрещенной зоне.

В (6) $\gamma_1, \gamma \cong \gamma_{2,3}$ — параметры Латтинжера, *m* — масса свободного электрона, $P_2(p_z/p) = P_2(x) = 3(3x^2 - 1)/2$. При p = 0 величина расщепления вершины валентной зоны $\Delta = \mu X$, где $\mu = 4$ мэВ/кбар и $\mu = 6$ мэВ/кбар для направлений давления вдоль кристаллографических осей [111] и [001] соответственно. Ось *z* совпадает с направлением давления. Законы дисперсии расщепленных давлением валентных подзон $\varepsilon_{\pm p}$ имеют вид

$$\varepsilon_{\pm p} = \frac{\gamma_1 p^2}{2m} \pm \sqrt{\left(\frac{\gamma p^2}{m}\right)^2 - \frac{\gamma p^2}{m}} \Delta P_2\left(\frac{p_z}{p}\right) + \left(\frac{\Delta}{2}\right)^2.$$
(7)

Методика решения уравнения (5) изложена в работе [9]. Уравнение $1+\lambda_{-}(\varepsilon) = 0$ определяет положения нижнего по энергии локализованного примесного уровня и здесь не рассматривается.

Используя известные положения КПС для примеси Ga в Ge: $E_0 = -11.5$ мэВ при $\Delta = 0$ и $E_1 \simeq 4.8$ мэВ при $\Delta \approx 50$ мэВ [6], можно вычислить параметры α и β . В итоге для α было получено значение $\alpha = 0.25 \gamma/m_0 E_0$. Величина β не вычислялась, так как она в конечных формулах не участвует. При $\alpha = 0$ уравнение (5) соответствует модели ПНР.

Обсуждение результатов расчета

Рассчитанные положения уровня КПС в зависимости от величины Δ приведены на рис. 1. Там же показаны: зависимость (кривая 3), получающаяся в модели ПНР (расчет по (5) при $\alpha = 0$), и зависимость для кулоновского потенциала (кривая 4), полученная плавным

Рис. 2. Зависимости уширения Γ уровня *E* от величины расщепления валентных подзон Δ , рассчитанные по формулам (5)–(6): $1 - \alpha = 0.25 \gamma/m_0 E_0$, $2 - \alpha = 0$ (модель ПНР).

соединением трех точек, соответствующих: 1) глубине залегания уровня при $\Delta = 0; 2)$ моменту вхождения в сплошной спектр — $\Delta \approx 16$ мэВ [9]; 3) положению КПС при $\Delta \approx 50$ мэВ [6]. Вторая "точка" достаточно условна, так как расщепление примесного уровня при деформации определено для случая $\Delta \ll E$ [7], причем даже в этом случае трудно оценить точность полученных оценок из-за их сильной зависимости от вида выбранных пробных волновых функций. Отметим хорошее качественное соответствие полученного результата (кривая 5 на рис. 1) случаю примесного центра с кулоновским взаимодействием (штриховая кривая 4) в пределе больших давлений (расщеплений Δ): глубина залегания КПС под дном подзоны ε_{+p} выходит на полку [6]. Расхождение кривых 4 и 5 в области 0 \leq Δ \leq 50 мэВ связано с приблизительным характером построения кривой 4 (см. также замечание выше о второй точке), а также с распространением решения (3), полученного для $p > 2|p^*|$, на область значений p от 0 до $2|p^*|$. Тем не менее рассчитанная кривая качественно и полуколичественно описывает энергетическое положение КПС в зависимости от величины Д. Рассчитанная ширина КПС (рис. 2) принципиально отличается от результата, получаемого в модели ПНР, — она проходит через максимум и затем уменьшается, что может свидетельствовать о стремлении КПС к локализации с ростом давления. Последнее физически понятно, поскольку с увеличением расщепления уровней (давления) увеличивается энергетическое расстояние между КПС и нижней валентной подзоной ε_{-p} и вклад этой подзоны в формирование КПС уменьшается пропорционально $1/(\varepsilon_{+p} - E)$.

Определяемая (3) волновая функция КПС может быть использована при теоретическом исследовании различного рода кинетических и оптических эффектов при одноосных деформациях.

Работа поддержана Министерством образования и науки и Фондом фундаментальных исследований Украины, грант 2.4/970.

Список литературы

- И.В. Алтухов, М.С. Каган, В.П. Синис. Письма ЖЭТФ, 47, 133 (1988).
- [2] В.М. Бондарь, Л.Е. Воробьев, А.Т. Далакян, В.Н. Тулупенко, Д.А. Фирсов. Письма ЖЭТФ, 70, 257 (1999).
- [3] И.В. Алтухов, М.С. Каган, К.А. Королев, В.П. Синис, Ш.Дж. Томас, К.Л. Ванг. В сб.: Материалы совещания "Нанофотоника" (Н. Новгород, ИФМ РАН, 1999) с. 56.
- [4] И.В. Алтухов, М.С. Каган, К.А. Королев, В.П. Синис. Письма ЖЭТФ, 59, 455 (1994).
- [5] А.Т. Далакян, В.Н. Тулупенко, Д.А. Фирсов, В.М. Бондарь. Письма ЖЭТФ, 69, 638 (1999).
- [6] И.В. Алтухов, М.С. Каган, К.А. Королев, М.А. Одноблюдов, В.П. Синис, Е.Г. Чиркова, И.Н. Яссиевич. ЖЭТФ, 115, 89 (1999).
- [7] Г.Л. Бир, Г.Е. Пикус. Симметрия и деформационные эффекты в полупроводниках (М., Наука, 1972).
- [8] Е.В. Баханова, Ф.Т. Васько. ФТТ, **32**, 86 (1990).
- [9] М.А. Одноблюдов, А.А. Пахомов, В.М. Чистяков, И.Н. Яссиевич. ФТП, **31**, 1180 (1997).
- [10] А.А. Абрамов, Ф.Т. Васько, В.Н. Тулупенко, Д.А. Фирсов. ФТП, 33, 691 (1999).

Редактор Т.А. Полянская

Quasi-local impurity states in an uniaxially stressed *p*-Ge

A.A. Abramov, V.N. Tulupenko, D.A. Firsov*

Donbass State Engineering Academy, 84913 Kramatorsk, Ukraine *St. Petersburg State Technical University, 195251 St. Petersburg, Russia

Abstract Basic characteristics of quasi-local states on shallow impurity centres (with screened Coulomb potential) in an uniaxially stressed *p*-Ge have been studied theoretically. Positions and broadening of quasi-local impurity states against pressure are calculated. Results of calculations are presented for Ga impurity.