Зонная структура сверхпроводящего MgB_2 и изоструктурных CaGa₂, AgB₂, AuB₂, ZrBe₂ и HfBe₂

© И.Р. Шеин, Н.И. Медведева, А.Л. Ивановский

Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: ivanovskii@ihim.uran.ru

(Поступила в Редакцию 27 апреля 2001 г.)

Самосогласованным полнопотенциальным методом ЛМТО проведены расчеты зонной структуры "среднетемпературного" сверхпроводника MgB₂ и изоструктурных гексагональных фаз CaGa₂, ZrBe₂, HfBe₂, AgB₂, AuB₂. Анализируются факторы, ответственные за сверхпроводящие свойства диборида магния. Результаты сопоставлены с предшествующими расчетами и имеющимся экспериментом.

Открытие [1] сверхпроводимости в дибориде магния привлекло большое внимание к его электронному строению. MgB₂ явился первым соединением, занявшим по величине T_C (~ 40 K) "промежуточное" место между низко- и высокотемпературными сверхпроводниками. Подчеркивая это, в современной литературе MgB₂ определяют как "среднетемпературный" сверхпроводника (СТСП, *medium* T_c -superconductor). Важной особенностью MgB₂ является его квазидвумерная структура (типа AlB₂, пространственная группа $D_{6h}^1 - P6/mmm$), состоящая из гексагональных слоев Mg и плоских графитоподобных сеток бора, упакованных в последовательности ... MgBMgB... [2–6].

Как показали исследования изотопического эффекта [7], эксперименты по туннельной [8], фотоэлектронной [9], колебательной спектроскопии [10], а также расчеты зонной структуры [11–17] и фононного спектра [18–20], сверхпроводимость MgB₂ следует отнести на счет сильного электрон-фононного взаимодействия относительно высокой плотности электронных состояний 2D-подобных $\sigma(p_{x,y})$ -зон бора на уровне Ферми $(N(E_F))$ и наличия $p_{x,y}$ -дырочных состояний в точке Г зоны Бриллюэна (3Б).

С этих позиций анализировались сверхпроводящие характеристики некоторых твердых растворов на основе базисной СТСП-фазы (получаемых при введении в подрешетки магния или бора разнообразных электронных или дырочных допантов [14–17]), а также ряда родственных AlB₂-подобных устойчивых и метастабильных диборидов: Na, Li [13,17], Be [14], Ca [16], Al [15–17]. Зонная структура серии диборидов 3*d*-(Sc, Ti... Mn), 4*d*-(Y, Zr... Ru) и 5*d*-(La, Hf... Os) металлов исследована в [21,22].

Сейчас известно более сотни бинарных соединений со структурой типа AlB₂. Кроме перечисленных диборидов в эту группу входят разнообразные MX_2 -фазы, где в качестве элементов X, образующих графитоподобные сетки, могут выступать также Be, Si, Ga, Hg, Zn, Cd, Al, Cu, Ag, Au [2,4]. Параметры кристаллической структуры данных фаз (отношение c/a) меняются в широком интервале — от 0.59 до 1.22. Поскольку основная роль в электрон-фононных взаимодействиях в СТСП MgB_2 принадлежит электронно-дырочным состояниям и колебательным модам атомов бора (в сетках) [18–20], очевидно, что возможные "неборидные" аналоги MgB_2 должны включать в качестве *X* легкие *sp*-атомы.

В работе проведен сравнительный анализ зонной структуры СТСП MgB₂ (c/a = 1.142) и изоструктурных MX_2 -фаз, где графитоподобные сетки образованы бериллием или галлием: ZrBe₂, HfBe₂ (c/a = 0.85-0.84) и CaGa₂ (c/a = 1.00). Кроме того, мы рассмотрели гипотетические дибориды Ag и Au. Хотя их существование (в равновесных условиях) остается дискуссионным [2–6], эти металлы (а также Cu) в составе MgB₂ могут играть роль дырочных допантов. Радиусы Ag и Au (1.13–1.37) заметно больше радиуса Mg²⁺ (0.74 Å), т.е. при их введении в диборид магния можно ожидать роста объема ячейки и смягчения фононных мод. Оба упомянутых обстоятельства рассматриваются [12–17] как благоприятные для возможного повышения СТСП-характеристик MgB₂.

1. Модель и метод расчета

В структуре MgB₂ [2–6] атомы бора находятся в центрах тригональных призм атомов Mg, которые соприкасаются всеми гранями и образуют трехмерную упаковку. Координационные числа и координационные многогранники атомов Mg — 20 и [MgB₁₂Mg₈], атомов бора — 9 и [BMg₆B₃] соответственно. Позиции атомов (в ячейке): 1Mg(a) — 0, 0, 0; 2B(d) — 1/3, 2/3, 1/2 и 2/3, 1/3, 1/2. Параметры ячеки MgB₂ и изоструктурных MX_2 -фаз (CaGa₂, ZrBe₂, HfBe₂, AgB₂, AuB₂) представлены в табл. 1. Расчеты их зонной структуры выполнены самосогласованным полнопотенциальным линейным методом muffin-tin-орбиталей (FLMTO) [23,24] в рамках теории функционала плотности с учетом релятивистских эффектов по схеме [25] с обменно-корреляционным потенциалом, предложенным в работе [26].

Для сравнительного анализа отдельных межатомных взаимодействий в MX_2 использовали также зонный метод сильной связи в параметризации Хюккеля, с помощью которого проведены оценки заселенности перекрывания

Фаза	а	С	c/a	X - X	M - X	V
MgB ₂	3.084	3.522	1.142	1.781	2.504	29.010
CaGa ₂	4.320	4.320	1.000	2.494	3.299	69.820
AgB_2	3.000	3.240	1.080	1.732	2.372	25.253
AuB_2	3.134	3.513	1.121	1.809	2.522	29.882
ZrBe ₂	3.820	3.250	0.850	2.205	2.739	27.878
HfBe ₂	3.788	3.168	0.836	2.187	2.700	27.177

Таблица 1. Структурные параметры гексагональных *МХ*₂-фаз

Примечание. Приведены параметры решетки a, c, c/a; ближайшие межатомные расстояния X-X, M-X, все вÅ; объем ячейки $V, Å^3$ [2–6].

Таблица 2. Общая плотность состояний на уровне Ферми $(N(E_F))$ и вклады отдельных состояний (состояний/eV·ячейку) в гексагональных MX_2 -фазах

Фаза	$N(E_F)$							
	Общая	Ms	Мр	Md	Mf	Xs	Xp	Xd
MgB ₂	0.719	0.040	0.083	0.138	_	0.007	0.448	_
CaGa ₂	1.486	0.028	0.177	0.696		0.012	0.546	0.027
AgB_2	2.000	0.032	0.066	0.570		0.057	1.333	—
AuB_2	2.153	0.144	0.068	0.655		0.069	1.258	—
$ZrBe_2$	1.680	0.002	0.112	1.091		0.002	0.473	_
$HfBe_2$	1.660	0.004	0.118	1.011	0.025	0.003	0.499	—

кристаллических орбиталей — аналога широко известных в квантовой химии молекул заселенностей (индексов) парных межатомных связей, см. [27].

2. Обсуждение результатов

Результаты расчетов MgB_2 , $CaGa_2$, $ZrBe_2$, $HfBe_2$, AgB_2 и AuB_2 приведены на рис. 1, 2 и в табл. 2. Их обсуждение проведем в сравнении с зонной структурой СТСП MgB_2 .

2.1. Диборид магния. Энергетические зоны и плотности состояний MgB₂ представлены на рис. 1, 2. Видно, что энергетический спектр валентной зоны MgB₂ определяется в основном B2*p*-состояниями, которые образуют две выделенные группы энергетических зон $\sigma(2p_{x,y})$ и $\pi(p_z)$ типов, с существенно различными дисперсионными зависимостями E(k).

Для В2 $p_{x,y}$ -зон дисперсия E(k) максимальна в направлении $k_{x,y}(\Gamma-K)$. Эти зоны отражают распределение состояний бора в плоскостях графитоподобных сеток, имеют 2D-тип, формируют плоские участки в направлении $k_z(\Gamma-A)$. В2 $p_{x,y}$ -зоны вносят вклад в плотность состояний по всей ширине валентной зоны, образуя резонансный пик плотности состояний (~2 eV ниже E_F , рис. 2), связанный с сингулярностью Ван–Хова (CBX) в точке M 3Б. Эти зоны вносят заметный вклад в $N(E_F)$ и ответственны за металлоподобные свойства диборида. В2 $p_{x,y}$ -зоны для участка Γ -A находятся выше E_F и

образуют цилиндрические элементы поверхности Ферми дырочного типа.

В2 p_z -подобные состояния ответственны за слабые межслоевые связи. Эти зоны (3D-типа) имеют максимальную дисперсию в направлении $k_z(\Gamma - A)$. В*s*-состояния примешиваются к В2p-подобным зонам вблизи края валентной зоны и в зоне проводимости (рис. 2). Аналогичная структура зон получена в иных расчетах [11–17] и позволяет объяснить СТСП-свойства MgB₂ (подробнее см. [11–13]).

Таким образом, характеристическими элементами зонного спектра СТСП-MgB₂ по отношению к его сверхпроводящим свойствам и эффектам внутри- и межслоевых взаимодействий являются: 1) положение вырожденных 2D-подобных $\sigma(p_{x,y})$ -зон относительно точки Г ЗБ (наличие дырочных состояний); 2) энергетический интервал расщепления связывающих и антисвязывающих $\sigma(p_{x,y})$ -зон (зависит от внутрислоевых B–B взаимодействий); 3) величина дисперсии *π*-зоны в направлении Г-А и энергия точки пересечения связывающих и антисвязывающих В2р-зон (в точке К ЗБ зависит от межслоевых Mg-B взаимодействий); 4) положение СВХ квазидвумерных σ -зон относительно уровня Ферми; 5) общая плотность состояний на уровне Ферми и ее парциальный состав. Указанные особенности зонной структуры будут являться предметом анализа при обсуждении остальных AlB2-подобных фаз.

2.2. СаGа₂. Энергетические зоны этой фазы (рис. 1, см. также [28]) и СТСП MgB₂ резко отличаются. Для галлида кальция $\sigma(p_{x,y})$ - и $\pi(p_z)$ -зоны пересекаются в точке Г ЗБ и расположены ниже E_F . Небольшая концентрация σ -дырок присутствует вблизи точки A. В результате топология поверхности Ферми MgB₂ и CaGa₂ оказывается различной: цилиндры (для MgB₂ — в направлении Γ -A, см. [11,12]) в CaGa₂ вырождаются в конусы. Отметим, что сходная структура $\sigma(p_{x,y})$ -зон получена для изоэлектронного и изоструктурного BeB₂ [15,16], который не является СТСП [29].

Внутри- (Ga–Ga) и межслоевые (Ga–Ca) взаимодействия в CaGa₂ несколько слабее, чем в MgB₂. Это видно по уменьшению как величины расщепления связывающих и антисвязывающих $\sigma(p_{x,y})$ -зон, так и величины дисперсии π -зоны (в направлении Γ –A). СВХ σ -зоны сдвинута к E_F , что может быть связано с ростом объема ячейки ($V(CaGa_2)/V(MgB_2) = 2.4$). Аналогичные сдвиги установлены [14] для гипотетического CaB₂ и в модельных расчетах диборида магния с "растянутой" решеткой [17]. Основной вклад в плотность состояний на уровне Ферми (~61%) вносят состояния кальция.

2.3. ZrBe₂, HfBe₂. Структура верхнего края валентной зоны бериллидов определена сильными гибридными взаимодействиями (Zr, Hf) d-(Be) *sp*-состояний, рис. 1, 2. Ве σ -зоны имеют заметную дисперсию в направлении Γ -A, дырочные состояния отсутствуют. По типу распределения энергетических зон, их составу и степени заполнения спектры бериллидов Zr, Hf подобны таковым для изоструктурных (и изоэлектронных) диборидов

Рис. 1. Энергетические зоны MgB₂, CaGa₂, AgB₂, AuB₂, ZrBe₂, HfBe₂.

Sc, Y [14,16]. Как известно, для последних сверхпроводимость отсутствует вплоть до T < 1.4 K [4].

2.4. AgB₂, AuB₂. Энергетические зоны этих гипотетических диборидов наиболее близки (среди рассмотренных нами фаз) зонам СТСП MgB₂ (рис. 1). Основные отличия связаны с существенным уменьшением дисперсии σ - и π -зон. Последнее отстоятельство (наряду с уменьшением энергии точки пересечения связывающих и антисвязывающих B2 p_z -зон (в точке K 3Б) свидетельствует о крайне слабых межслоевых связях и, очевидно, является одним из факторов нестабильности (при нормальных условиях) данных диборидов. С другой стороны, наличие полосы заполненных (Ag, Au)d-состояний приводит к энергетическому разделению σ -зон, верхние из которых

оказываются локализованными вблизи E_F (рис. 1, 2). Это приводит к резкому возрастанию (приблизительно в 3 раза по сравнению с MgB₂) плотности B2*p*-состояний на уровне Ферми (табл. 2). Данный факт можно рассматривать как благоприятный для формирования сверхпроводящих свойств диборидов.

В заключение обсудим соотношения отдельных типов $(X-X, M-X \ \text{и} \ M-M)$ связей, использовав величины заселенности перекрывания кристаллических орбиталей (табл. 3). Видно, что для MgB₂ основными являются В–В взаимодействия в плоскостях графитоподобных сеток. Это согласуется с расчетами [30] энергий отдельных связей (E_{bond} , FLMTO-вычисления по методу [21]), свидетельствующими об определяющем вкладе

Рис. 2. Полная (I) и локальные(II, III) плотности состояний: *a* — MgB₂, *b* — CaGa₂, *c* — AgB₂, *d* — ZrBe₂. Для каждой *MX*₂-фазы приводятся вклады плотностей состояний. II — атомов *M*: *s*-1, *p*-2, *d*-3; III — атомов *X*: *s*-1, *p*-2, *d*-3.

2124

Таблица 3. Заселенности перекрывания кристаллических орбиталей отдельных связей в гексагональных *MX*₂-фазах, рассчитанные зонным методом сильной связи (электрон/связь)*

Фаза	X - X	M - X	M - M
$\begin{array}{c} MgB_2\\ CaGa_2\\ AuB_2\\ ZrBe_2 \end{array}$	0.742 0.734 0.292 0.241	0.053 0.039 0.030 0.102	$\begin{array}{c} -0.009 \\ -0.002 \\ 0.022 \\ 0.039 \end{array}$

* Расчеты с использованием двенадцатиатомных суперячеек $M_4 X_8$.

в общую энергию когезии MgB₂ B–B взаимодействий (B–B (68%), B–Mg (23%) и Mg–Mg (9%)). Аналогичный тип связи характерен для связей CaGa₂ (табл. 3).

Принципиально иная система связи реализуется в бериллидах, где все типы взаимодействий (например, для $ZrBe_2 - Zr-Zr$, Zr-Be, Be-Be) оказываются сравнимыми (табл. 2). Наконец, подобные расчеты для гипотетических диборидов Ag, Au позволяют связать их нестабильность как с уменьшением (относительно MgB₂) межслоевых связей M-B, так и с резким ослаблением B-B связей в сетках. Эта "ненасыщенность" B-B связей определена гораздо меньшими величинами переноса электронной плотности в направлении (Ag, Au) \rightarrow B по сравнению с переносом Mg \rightarrow B в дибориде магния.

Проведенные расчеты показывают, что зонная структура рассмотренных "неборидных" AlB2-подобных фаз, образованных с участием *sp*-элементов, составляющих графитоподобные сетки, резко отличается от зонной структуры MgB₂, и поиск новых СТСП-фаз среди последних (как и диборидов *d*-металлов, см. [14,16]) будет, очевидно, бесперспективен. Вероятно, основными СТСП-кандидатами среди AlB2-подобных структур остаются дибориды элементов I, II групп, их твердые растворы или сверхструктуры. Расчеты гипотетических диборидов Ag, Au показывают, что в случае присутствия данных элементов, например в качестве примесей (или атомных слоев) в составе твердых растворов (или сверхструктур), можно модифицировать СТСП-свойства диборида магния за счет повышения прифермиевской плотности состояний системы.

Список литературы

- J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu. Nature 410, 63 (2001).
- [2] H. Goldschmidt. Interstitial Alloys. Butterworths, London (1967).
- [3] Г.В. Самсонов, Т.И. Серебрякова, В.А. Неронов. Бориды. Атомиздат, М. (1975).
- [4] Г.В. Самсонов, И.М. Виницкий. Тугоплавкие соединения (Справочник). Металлургия, М. (1976).
- [5] Ю.Б. Кузьма. Кристаллохимия боридов. Изд-во Вища шк., Львов (1983).

- [6] Т.И. Серебрякова, В.А. Неронов, П.Д. Пешев. Высокотемпературные бориды. Металлургия, М. (1991).
- [7] S.L. Bud'ko, G. Lapertot, C. Petrovic, C.E. Cunningham, N. Anderson, P.C. Canfield. Phys. Rev. Lett. 86, 1877 (2001).
- [8] A. Sharoni, I. Felner, O. Millo. Cond-mat/0102325 (2001).
- [9] T. Takahashi, T. Sato, S. Souma, T. Muranako, J. Akimitsu. Cond-mat/0103079 (2001).
- [10] B. Gorshunov, C.A. Kutscher, P. Haas, M. Dressel, F.P. Mena, A.B. Kuz'menko, D. Van der Marel, T. Muranaka, J. Akimutsu. Cond-mat/0103164 (2001).
- [11] J. Kortus, I.I. Mazin, K.D. Belaschenko, V.P. Antropov, L.L. Boyer. Cond-mat/0101446 (2001).
- [12] K.D. Belaschenko, M. van Schlifgaarde, V.A. Antropov. Condmat/0102290 (2001).
- [13] J.M. An, W.E. Pickett. Cond-mat/0102391 (2001).
- [14] N.I. Medvedeva, A.L. Ivanovskii, J.E. Medvedeva, A.J. Freeman. Cond-mat/0103157 (2001).
- [15] G. Satta, G. Profeta, F. Bernardini, A. Contonenza, S. Massidda. Cond-mat/0102358 (2001).
- [16] Н.И. Медведева, Ю.Е. Медведева, А.Л. Ивановский, В.Г. Зубков, А. Фриман. Письма в ЖЭТФ 73, 378 (2001).
- [17] J.B. Neaton, A. Perali. Cond-mat/0104098 (2001).
- [18] Y. Kong, O.V. Dolgov, O. Jepsen, O.K. Andersen. Condmat/0102499 (2001).
- [19] K. Bohnen, R. Heid, B. Renker. Cond-mat/0103319 (2001).
- [20] A. Lin, I.I. Mazin, J. Kortus. Cond-mat/0103570 (2001).
- [21] А.Л. Ивановский, Н.И. Медведева, Ю.Е. Медведева, А.Е. Никифоров, Г.П. Швейкин. Металлофизика: новейшие технологии 20, 41 (1998).
- [22] А.Л. Ивановский, Н.И. Медведева, Ю.Е. Медведева. Металлофизика: новейшие технологии **21**, 19 (1999).
- [23] M. Methfessel, C. Rodriquez, O.K. Andersen. Phys. Rev. B40, 2009 (1989).
- [24] M. Methfessel, M. Scheffler. Physica B172, 175 (1991).
- [25] S.Y. Savrasov. Phys. Rev. B54, 16470 (1996).
- [26] S.H. Vosko, L. Wilk, M. Nusair. Canadian J. Phys. 58, 1200 (1980).
- [27] А.Л. Ивановский, Г.П. Швейкин. Квантовая химия в материаловедении. Бор, его сплавы и соединения. Изд-во Екатеринбург, Екатеринбург (1997).
- [28] S. Massidda, A. Baldereschi. Solid State Commun. 66, 855 (1988).
- [29] I. Felner. Cond-mat/0102508 (2001).
- [30] A.L. Ivanovskii, N.I. Medvedeva. Russ. J. Inorgan. Chem. 45, 1234 (2000).