Ультразвуковые исследования кристаллов $(CH_3)_2NH_2AI(SO_4)_2 \cdot 6H_2O$, облученных γ -квантами и электронами

© А.У. Шелег, А.Я. Ячковский, Н.Ф. Курилович

Институт физики твердого тела и полупроводников Национальной академии наук Белоруссии, 220072 Минск, Белоруссия

E-mail: sheleg@ifttp.bas-net.by

(Поступила в Редакцию 27 марта 2001 г.)

Эхо-импульсным методом проведены измерения температурной зависимости скоростей продольных ультразвуковых волн (УЗВ) в кристалле (CH₃)₂NH₂Al(SO₄)₂ · 6H₂O в области температур 90–300 К. Измерения проводились вдоль взаимно перпендикулярных кристаллофизических направлений X, Y, Z на необлученных образцах и образцах, облученных различными дозами γ -квантов и пучком электронов. Показано, что наблюдается анизотропия скорости V УЗВ в этом кристалле, причем $V_{YY} > V_{XX} > V_{ZZ}$. На кривых $V_{XX} = f(T), V_{YY} = f(T)$ и $V_{ZZ} = f(T)$ в области сегнетоэлектрического фазового перехода (ФП) при $T_{c1} = 152$ К, а также в области $T_{c2} = 218$ К обнаружены аномалии в виде изломов. Установлено, что с ростом дозы облучения кристалла температура ФП T_{c1} уменьшается, а аномалии на температурных зависимостях скоростей УЗВ размываются.

Кристалл диметиламмонийалюминийсульфата гексагидрата (ДМААС) (CH₃)₂NH₂Al(SO₄)₂ \cdot 6H₂O — представитель семейства кристаллов сегнетоэлектриковсегнетоэластиков, который в последнее время широко исследуется различными методами и интересен тем, что в нем наблюдается ряд фазовых превращений. В параэлектрической фазе этот кристалл является сегнетоэластиком. С понижением температуры при T_{c1} = 152 K происходит фазовый переход из сегнетоэластической фазы в сегнетоэлектрическую [1]. В работах [2,3] при исследовании температурных зависимостей двулучепреломления и пластических свойств кристаллов ДМААС обнаружены аномалии этих свойств при $T \sim 110$ и 390 K, свидетельствующие о возможных фазовых превращениях при данных температурах. Как показано в [4] и подтверждено в [5], по данным исследования диэлектрических свойств в кристалле ДМААС наблюдается низкотемпературный фазовый переход при $T \approx 75 \,\mathrm{K}$, природа которого пока не установлена. Кроме того, в работе [5] обнаружено аномальное поведение диэлектрической проницаемости ε и tg δ в интервале температур 30–50 K, что, возможно, также связано с какими-то превращениями.

В настоящей работе представлены результаты исследования температурных зависимостей скоростей продольных ультразвуковых волн (УЗВ) V_{XX} , V_{YY} , V_{ZZ} , измеренных вдоль взаимно перпендикулярных кристаллографических осей X, Y, Z в кристалле ДМААС, в интервале температур 90–300 К и влияния на них облучения γ -квантами и пучком электронов.

Методика эксперимента и результаты исследования

Измерения скоростей продольных УЗВ проводились эхо-импульсным методом на измерителе скорости ультразвука ИС-3, где время между отраженными сигналами определялось с помощью калибрационных меток. Возбуждение продольных УЗВ осуществлялось пьезоэлектрической кварцевой пластинкой Х-среза. В качестве акустической смазки использовалась гидрофобизирующая жидкость 136-157, которая обеспечивала хороший акустический контакт образца с измерительной линией во всем исследованном интервале температур. Измерения проводились в интервале температур 90-300 К на частоте 10 kHz. Скорость изменения температуры составляла ~ 0.4 K/min. Образцы для исследований вырезались в виде параллелепипедов размером $\sim 4.5 \times 4.5 \times 5$ mm. Поскольку кристаллы ДМААС образуют моноклинную структуру с параметрами элементарной ячейки a = 6.403 Å, b = 10.747 Å, c = 11.128 Å, $\beta = 100.47^{\circ}$ [6], грани образцов были ориентированы следующим образом: кристаллофизическая ось Х была параллельна а, У располагалась вдоль оси симметрии второго порядка (вдоль кристаллографической оси *b*), Z — направление, перпендикулярное обеим осям: X и Ү. Определение температуры проводилось хромелькопелевой термопарой, прикрепленной непосредственно к образцу, находящемуся в измерительной линии. Измерение температурной зависимости скорости УЗВ проводилось в режиме квазистационарного нагревания образцов, охлажденных в парах жидкого азота. Повышение температуры осуществлялось с помощью нагревателя, смонтированного на термостатирующем экране, окружающем измерительную линию. При этом абсолютная температура определялась с точностью 0.8 К, а точность относительных измерений температуры была не хуже 0.2 К. Облучение образцов у-квантами проводилось на γ -установке от источника Co⁶⁰ с мощностью дозы в зоне облучения ≈ 120 R/s. Доза облучения накапливалась на одном и том же образце путем последовательных экспозиций и составляла 10⁶, 10⁷, 10⁸ R. Облучение электронами общим потоком 10¹⁶ e/cm² проводилось на ускорителе электронов с энергией 6 MeV, причем облучались образцы, которые уже были подвергнуты ү-облучению

Рис. 1. Температурные зависимости скорости продольной ультразвуковой волны V_{XX} вдоль кристаллофизического направления X кристалла (CH₃)₂NH₂Al(SO₄)₂ · 6H₂O для необлученного образца (1) и образца, облученного дозами γ -квантов 10⁶ R (вставка), 10⁷ R (2), 10⁸ R (3); пучком электронов 10¹⁶ e/cm² (4).

дозой 10^8 R. Точность измерения изменения скорости продольных УЗВ составляла $\sim 5 \cdot 10^{-5}$. Точность абсолютных значений скоростей была не хуже чем $3 \cdot 10^{-2}$.

Результаты измерений температурных зависимостей скоростей продольных УЗВ в различных кристаллофизических направлениях X, Y, Z представлены на рис. 1-3, из которых видно, что в кристалле ДМААС наблюдается анизотропия скоростей УЗВ, причем $V_{YY} > V_{XX} > V_{ZZ}$ во всем исследуемом интервале температур. Здесь же приведены зависимости скоростей продольных УЗВ V_{XX}, V_{YY}, V_{ZZ} вдоль направлений X, Y, Z соответственно как для необлученных образцов, так и облученных различными дозами ү-квантов и пучком электронов общим потоком $1 \cdot 10^{16} \text{ e/cm}^2$. Видно, что с уменьшением температуры образца скорость растет, а при температуре $\Phi \Pi T_{c1} = 152 \, \mathrm{K}$ наблюдается аномалия в виде четкого излома и изменения характера поведения кривых $V_{XX} = f(T), V_{YY} = f(T), V_{ZZ} = f(T)$, ниже T_{c1} . Характерно, что ниже точки ФП, т.е. в области сегнетоэлектрической фазы, температурная зависимость скоростей продольных УЗВ во всех исследуемых кристаллофизических направлениях носит нелинейный характер, в то время как выше T_{c1}, т.е. в области сегнетоэластической фазы, эта зависимость может быть представлена в виде двух линейных участков 152-218 К и 218-200 К (см. вставку на рис. 1). Таким образом, в области температуры 218К также наблюдается излом. Хотя следует отметить, что на кривых $V_{XX} = f(T), V_{YY} = f(T)$ и $V_{ZZ} = f(T)$ для образцов, облученных электронами, аномалии в виде изломов в этой области температур размываются. В работе [7], где проведены изменения скорости УЗВ в кристалле ДМААС только вдоль оси b, на кривой $V_{YY} = f(T)$ при температурах 152 и 218 К обнаружены такие же аномалии. Хотя природа аномалии при $T_{c2} = 218 \,\mathrm{K}$ пока что неизвестна, следует упомянуть, что в [8] при исследовании теплового расширения на кривых температурных зависимостей коэффициентов теплового расширения вдоль основных кристаллографических осей а, b и с кристалла ДМААС в области $T \sim 220 \, {
m K}$ обнаружены небольшие размытые минимумы. Облучению электронами подвергался образец, который уже имел дозу γ -облучения 10⁸ R. Видно, что характер изменения температурной зависимости скоростей УЗВ под действием облучения во всех кристаллофизических направлениях X, Y, Z одинаков. При у-облучении происходит смещение T_{c1} в область низких температур: так, при дозе 10^8 R $T_{c1} = 148$ K, а после электронного облучения температура $\Phi \Pi T_{c1}$ уменьшается на 10 К по сравнению с необлученным образцом (см. вставку на рис. 3). Следует отметить, что измерения проводились и на образцах, облученных дозой 10⁶ R, однако, поскольку эти результаты почти не отличались от результатов

Рис. 2. Температурные зависимости скорости продольной ультразвуковой волны V_{YY} вдоль кристаллофизического направления Y кристалла (CH₃)₂NH₂Al(SO₄)₂·6H₂O для необлученного образца (I) и образца, облученного дозами γ -квантов 10⁷ R (2), 10⁸ R (3); пучком электронов 10¹⁶ е/cm² (4).

Рис. 3. Температурные зависимости скорости продольной ультразвуковой волны V_{ZZ} вдоль кристаллофизического направления Z кристалла $(CH_3)_2NH_2Al(SO_4)_2 \cdot 6H_2O$ для необлученного образца (1) и образца, облученного дозами γ -квантов $10^7 R$ (2), $10^8 R$ (3); пучком электронов $10^{16} e/cm^2$ (4). На вставке стрелками показаны температуры $\Phi \Pi T_{c1}$ для необлученного образца (152 K) (1), для образца, облученного γ -квантами дозой $10^8 R$ (148 K) (3) и электронами (142 K) (4).

измерений на необлученных образцах, для этой дозы приведена только кривая $V_{XX} = f(T)$ (см. вставку на рис. 1).

Из рис. 1–3 видно, что под действием облучения происходит не только смещение точки $\Phi\Pi$, но и размытие аномалии при T_{c1} , т.е. излом на кривых $V_{XX} = f(T)$, $V_{YY} = f(T)$, $V_{ZZ} = f(T)$ становится более плавным. Смещение точки $\Phi\Pi T_{c1}$ в сторону более низких температур означает сужение области существования сегнетоэлектрической фазы в кристалле ДМААС под действием облучения. Причиной этого, как показано в [9], может служить уменьшение избыточной энергии $\Phi\Pi$, связанной с понижением концентрации сегнетоактивных диполей в результате образования дефектов и структурных искажений при облучении ДМААС.

Список литературы

- Л.Ф. Кирпичникова, Е.Ф. Андреев, И.Р. Иванов, Л.Ф. Шувалов, В.М. Варикаш. Кристаллография 33, 6, 1437 (1988).
- [2] О.Г. Влох, В.Б. Капустянык, И.И. Половинко, С.А. Свелеба, В.М. Варикаш, Е.Ф. Андреев, Л.А. Шувалов. Изв. АН СССР. Сер. физ. 54, 6, 1143 (1990).
- [3] Л.Ф. Кирпичникова, А.А. Урусовская, В.И. Мозговой, Г.А. Киоссе, И.М. Раздобреев. Кристаллография 36, 6, 1516 (1991).
- [4] А. Петрашко, Л.Ф. Кирпичникова, Л.А. Шувалов. Кристаллография 40, 3, 569 (1995).
- [5] Л.Ф. Кирпичникова, И. Бернарский, С. Вапляк, Л.А. Шувалов, В.В. Долбинина. Кристаллография 44, 1, 111 (1999).
- [6] A. Pietraszko, K. Łukaszewicz, L.F. Kirpichnicova. Pol. J. Chem. 67, 1877 (1993).
- [7] S. Wöpke, G. Sorge, V. Müller, H. Hempel, L.A. Shuvalov. 19th Spring Conf. on Ferroelectricity. Martin-Luther-University, Halle–Wittenberg (April 8–12 1991). P. 121.
- [8] А.У. Шелег, Е.М. Зуб, К.Н. Семенов. ФТТ 42, 9, 1682 (2000).
- [9] С.А. Тараскин, Б.А. Струков, В.А. Федорихин, Н.В. Белугина, В.А. Мелешина. ФТТ 19, 10, 2936 (1977).