Люминесценция микрокристаллов CsPbCl₃ в кристаллах CsCl: Pb и PbCl₂: Cs при синхротронном возбуждении

© А. Волошиновский, С. Мягкота, А. Глосковский, С. Зазубович*

Львовский национальный университет им. И. Франко, 79005 Львов, Украина * Институт физики, Тартуский университет, 51014 Тарту, Эстония E-mail:glos@bigfoot.com

(Поступила в Редакцию 10 января 2001 г. В окончательной редакции 5 марта 2001 г.)

Проведены исследования люминесценто-кинетических свойств микрокристаллов CsPbCl₃, диспергированных в матрице CsCl или PbCl₂, при возбуждении синхротронным излучением в энергетической области $E_{\rm exc} = 4-20$ eV. В кинетике затухания люминесценции микрокристаллов CsPbCl₃ зарегистрированы разные временные компоненты, обусловленные прямым возбуждением миркокристалов или перепоглощением свечения от других излучательных центров. Предполагается, что уменьшение временной константы затухания люминесценции микрокристаллов CsPbCl₃, диспергированы о с константой, характерной для монокристалла CsPbCl₃, объясняется проявлением квантоворазмерного эффекта.

Работа частично профинансирована INTAS (грант № 99-01350) и Научным Фондом Эстонии (грант № 3875).

Монокристаллы CsPbCl₃ характеризуются интенсивной люминесценцией свободных экситонов с основным временем спада порядка 0.5 ns [1,2], что является важным моментом для их возможного применения в качестве быстрых преобразователей высокоэнергетического излучения. Еще более короткие временные характеристики излучения присущи нанокристаллам вследствие квантоворазмерного эффекта. В работах [3–5] было показано, что в кристаллах CsCl: Pb и PbCl₂: Cs, прошедших определенную температурную обработку, образуются нанокристаллы CsPbCl₃, диспергированные соответственно в матрице CsCl и PbCl₂.

Изучение люминесцентно-кинетических характеристик микрокристаллов CsPbCl₃, диспергированных в диэлектрической матрице, при синхронном возбуждении необходимо для выяснения механизма трансформации возбуждающей радиации в собственные электронные возбуждения матрицы CsCl или PbCl₂, и микрокристаллов CsPbCl₃. С практической точки зрения такие исследования дают возможность определить перспективность использования указанных материалов для регистрации и визуализации высокоэнергетического излучения.

В данной работе приведены результаты исследований спектрально-люминесцентных и люминесцентно-кинетических параметров микрокристаллов CsPbCl₃, диспергированных в матрице CsCl или PbCl₂, при возбуждении синхротронным излучением в энергетическом диапазоне 4-20 eV.

1. Экспериментальная часть

Кристаллы CsCl:Pb ($C_{Pb} = 0.5 \text{ mol.\%}$), PbCl₂:Cs ($C_{Cs} = 0.05 \text{ и } 0.5 \text{ mol.\%}$) были выращены методом Стокбаргера (соответственно указана концен-

трация примесей в расплаве). Для образования микрокристаллов CsPbCl₃, диспергированных в матрицах CsCl или PbCl₂, кристалл CsCl:Pb или PbCl₂:Cs подвергался продолжительному (20-100 h) высокотемпературному $(180-220^{\circ}\text{C})$ отжигу. Такая высокотемпературная обработка приводит к температурной активации движения анионных и катионных вакансий, в результате чего в матрице CsCl или PbCl₂ образуются кластеры типа молекулы CsPbCl₃, которые агрегатизируются в виде микрокристаллов определенных размеров, диспергированных в указанных материалах.

Измерение люминесценто-кинетических характеристик кристаллов осуществлялось с использованием методов спектроскопии с верменным разрешением и проводилось на станции SUPERLUMI в лаборатории HASYLAB (Гамбург, Германия). Излучение от синхротронного источника направлялось на кристалл через двухметровый вакуумный монохроматор нормального падения (спектральная ширина входной щели ~ 0.2 nm). Регистрация люминесценции кристалла, который крепился на держателе гелиевого криостата, осуществлялась с помощью фотоумножителя через вторичный монохроматор В&М [6]. Измерения кинетики спада люминесценции осуществлялись методом коррелированного счета единичных фотонов. Математическая обработка кривых затухания люминесценции с учетом временных параметров возбуждающего синхротронного импульса позволяет оценивать минимальные временные константы длительностью 0.15 ns. Спектры люминесценции измерялись с временным окном регистрации $\Delta t = 5 \,\mathrm{ns}$ (в дальнейшем быстрая компонента спектра люминесценции) и с временным окном $\Delta t = 50 \,\mathrm{ns}$ и верменной задержкой $\delta t = 150$ ns относительно начала возбуждающего импульса (в дальнейшем медленная компонента спектра люминесценции).

Результаты эксперимента и их обсуждение

2.1. Спектры люминесценции микрокристаллов CsPbCl₃. Спектры люминесценции (СЛ) кристаллов CsCl:Pb и PbCl₂:Cs, возбужденные в области прозрачности кристаллов CsCl:Pb квантами с энергией $E_{\rm exc} = 5.12 \,{\rm eV}$ ($\lambda_{\rm exc} = 242 \,{\rm nm}$) и PbCl₂:Cs квантами с $E_{\rm exc} = 3.87 \,{\rm eV}$ ($\lambda_{\rm exc} = 320 \,{\rm nm}$) ($T = 10 \,{\rm K}$), представлены на рис. 1 (кривые I, 2). Узкие полосы с полушириной $\Delta H = 0.03$ и 0.05 eV и максимумом излучения $E_{\rm em} = 2.98 \,{\rm eV}$ ($\lambda_{\rm em} = 416 \,{\rm nm}$) в CsCl:Pb и $E_{\rm cm} = 2.93 \,{\rm eV}$ ($\lambda_{\rm em} = 423 \,{\rm nm}$) в PbCl₂:Cs близки по своему спектральному положению и полуширине к полосе излучения свободного экситона монокристалла CsPbCl₃ ($E_{\rm em} = 2.954 \,{\rm eV}$, $\lambda_{\rm em} = 419.6 \,{\rm nm}$; $\Delta H = 0.025 \,{\rm eV}$) (кривая 3), спектральное положение которого не зависит от длины волны возбуждающего света.

Увеличение полуширины полосы люминесценции микрокристаллов CsPbCl₃, диспергированных в матрице CsCl или PbCl₂ по сравнению с полушириной полосы люминесценции монокристалла CsPbCl₃, объясняется образованием микрокристаллов CsPbCl₃ разных размеров в процессе температурной обработки. Коротковолновый сдвиг максимума полосы излучения свободных экситонов микрокристаллов CsPbCl₃ в матрице CsCl относительно максимума излучения свободного экситона монокристалла CsPbCl₃ на величину $\Delta E = 26 \text{ meV}$ интерпретируется как проявление квантово-размерного

Puc. 1. Спектры люминесценции микрокристаллов CsPbCl₃, диспергированных в матрицах CsCl (1) и PbCl₂ (2), а также монокристалла CsPbCl₃ (3) при $E_{\text{exc}} = 5.12$ (1, 3) и 3.87 eV (2). T = 10 K.

Рис. 2. Спектры быстрой (*I*) и медленной (*2*) компонент люминесценции микрокристаллов, диспергированных в матрице CsCl при $E_{\text{exc}} = 7.29 \text{ eV} (170 \text{ nm}) (a)$ и в матрице PbCl₂ при $E_{\text{exc}} = 10.77 \text{ eV} (115 \text{ nm}) (b)$. T = 10 K.

эффекта [3]. Использование соотношения между величиной коротковолнового сдвига и радиусом микрокристалла *R*_{OD} [7]

$$\Delta E = \frac{\hbar^2 \pi^2}{2\mu R_{OD}^2},$$

где приведенная масса экситона $\mu \approx 0.65m_0$ [8,9] (m_0 — масса свободного электрона), позволило определить средний радиус микрокристаллов типа CsPbCl₃, диспергированных в матрице CsCl ($R_{OD} \approx 5$ nm).

Для объяснения длинноволнового сдвига спектра излучения микрокристаллов CsPbCl₃, диспергированных в матрице PbCl₂, проанализируем более детально структуру спектра излучения монокристалла CsPbCl₃ (кривая *3* на рис. 1). Коротковолновый максимум с $E_1 = 2.954 \text{ eV}$ (419.6 nm) приписывается излучению свободного экситона, а длинноволновый максимум с $E_2 = 2.91 \text{ eV}$ (426 nm) — излучению связанного экситона [2,9]. В случае образования микрокристаллов CsPbCl₃, диспергированных в матрице PbCl₂, структура кластера типа молекулы CsPbCl₃, возможно, искажается настолько, что возникает ситуация, когда излучение свободного экситона затруднено, а реализуется лишь излучение связанного экситона. В этом случае полоса люминесценции микрокристалла CsPbCl₃ с $E_{\rm em} = 2.93$ eV (423 nm) отвечает излучению связанного экситона и, следовательно, является смещенной в коротковолновую сторону относительно полосы излучения связанного экситона монокристалла CsPbCl₃ с $E_{\rm em} = 2.91$ eV (426 nm) на $\Delta E = 21$ meV.

СЛ кристаллов CsCl:Pb и PbCl₂:Cs, возбужденных в области экситонного или собственного поглощения соответствующей матрицы, содержат кроме вышеупомянутой полосы свечения микрокристаллов CsPbCl₃ широкую полосу свечения с $E_{\rm em} = 3.93 \, {\rm eV}$ (315 nm) (рис. 2, *a*) или широкие полосы свечения с $E_{\rm em} = 3.75 \, {\rm eV}$ (330 nm) и 2.69–2.58 eV (460–480 nm) в зависимости от энергии возбуждающих квантов (рис. 2, *b*). Согласно результатам исследования [10], полоса люминесценции с $E_{\rm em} = 3.93 \, {\rm eV}$ кристалла CsCl:Pb интерпретируется как излучательные переходы из ян-теллеровских минимумов релаксированного возбужденного состояния одниночного излучательного центра Pb²⁺– v_c^- в основное состояние примеси.

Результаты исследований, приведенные в [11,12], указывают на то, ЧТО полоса люминесценции с *E*_{em} = 3.75 eV и коротковолновое плечо полосы $E_{\rm em} = 2.69 - 2.58 \, {\rm eV}$ В кристалле PbCl₂:Cs с (рис. 2, b) интерпретируются как излучение двух типов автолокализированного экситона (АЛЭ), а длинноволновое плечо полосы с $E_{\rm em} = 2.69 - 2.58 \, {\rm eV}$ представляет собой свечение дефекта. На основании результатов исследований [13] полосы с $E_{\rm em} = 3.75$ и 2.69-2.58 eV интерпретируются как излучение двух типов АЛЭ.

Как видно из рис. 2, *a*, *b* в отличие от монокристалла CsPbCl₃, для которого характерна только быстрая компонента люминесценции с $E_{\rm em} = 2.954 \, {\rm eV}$, в исследуемых кристаллах узкополосная люминесценция характеризуется как быстрой, так и медленной компонентами.

Появление медленной компоненты в СЛ микрокристаллов может быть объяснено на основе анализа спектров возбуждения люминесценции монокристалла, а также спектров возбуждения быстрой и медленной компонент люминесценции микрокристаллов CsPbCl₃.

2.2. Спектры возбуждения микрокристаллов Cs Pb Cl₃

2.2.1. Кристалл CsCl:Pb. В спектрах возбуждения люминесценции микрокристаллов можно выделить характерные участки, связанные с областью прозрачности матрицы ($E_{\rm exc} = 4-7.8 \, {\rm eV}$) и областью зона-зонных переходов ($E_{\rm exc} > 8.3 \, {\rm eV}$). В области прозрачности матрицы, обращает на себя внимание спектральное совпадение некоторых максимумов спектра возбуждения (указанных стрелками на рис. 3, кривая *1*) быстрой компонеты полосы люминесценции микрокристаллов CsPbCl₃ с соответствующими минимумами спектра возбуждения полосы люминесценции свободного экситона монокристалла CsPbCl₃ (кривая *3* на рис. 3). Наличие мини-

Рис. 3. Спектры возбуждения быстрой (1) и медленной (2) компонент полосы люминесценции кристалла CsCl: Pb $(C_{Pb} = 0.5 \text{ mol.}\%)$ с $E_{em} = 2.98 \text{ eV}$ (*a*) и полосы́ люминесценции свободных экситонов монокристалла CsPbCl₃ с $E_{em} = 2.954 \text{ eV}$ (3), быстрой (4) и медленной (5) компонент полосы люминесценции отдельных излучательных центров Pb²⁺ $-v_c^-$ в матрице CsCl с $E_{em} = 3.93 \text{ eV}$ (*b*). Показаны A- и B-полосы поглощения отдельных излучательных центров. T = 10 K.

мумов в спектре возбуждения люминесценции обычно связывается с потерями на отражение и безызлучательный распад экситонов на приповерхностных дефектах. Обратная форма зависимости спектра возбуждения люминесценции может быть реализована, если размеры микрокристаллов настолько малы, что возбуждающий свет проходит через них, не испытвая существенного поглощения. В этом случае спектр возбуждения полосы собственного излучения микрокристаллов CsPbCl₃ повторяет ход спектра поглощения, а не искажается поглощением поверхностных дефектов, как это имеет место в монокристалле CsPbCl₃.

Резкое уменьшение эффективности возбуждения быстрой компоненты полосы люминесценции микрокристаллов CsPbCl₃ для квантов с энергией $E_{\rm exc} > 6.8 \, {\rm eV}$ (кривая *I* на рис. 3) может быть объяснено более эффективным возбуждением в этом энергетическом диа-

Рис. 4. Спектры возбуждения быстрой (1), медленной (2) компонент полосы люминесценции кристалла CsCl: Pb с $E_{\rm em} = 2.98$ eV и полосы люминесценции монокристалла CsPbCl₃ с $E_{\rm em} = 2.954$ eV (3), а также спектр остовно-валентной люминесценции матрицы CsCl (4). T = 10 K. Стрелками указано спектральное положение длинноволновой полосы экситонного поглощения и начала зона-зонных переходов матрицы CsCl при этой же температуре.

пазоне свечения одиночных центров $Pb^{2+}-v_c^-$ в кристалле CsCl:Pb (кривые 4 и 5).

Сходство спектров возбуждения медленной компоненты люминесценции микрокристалла CsPbCl₃ (кривая 2 на рис. 3) и спектра возбуждения люминесценции одиночных центров Pb²⁺ $-v_c^-$ указывает на причастность свинцовых центров к появлению медленной компоненты люминесценции в микрокристалле.

В энергетическом диапазоне $8 \le E_{\rm exc} \le 14 \, {\rm eV}$ люминесценция быстрой компоненты микрокристалла CsPbCl₃ не возбуждается (кривая *I* на рис. 4). Это обусловлено тем, что прямое оптическое возбуждение микрокристаллов CsPbCl₃ или непосредственная рекомбинация высокоэнергетических электронов и дырок с микрокристаллами CsPbCl₃ практически отсутствуют.

Возбуждение кристалла CsCl: Pb квантами с энергией больше 14 eV приводит к возбуждению остовновалентной люминесценции (OBЛ) матрицы CsCl, которая эффективно перепоглащается микрокристаллами CsPbCl₃ вследствие спектрального совпадения спектра возбуждения люминесценции микрокристалла CsPbCl₃ и OBЛ матрицы CsCl (кривые 1 и 4на рис. 4). Этот канал возбуждения микрокристаллов CsPbCl₃ объясняет наличие быстрой рентгенолюминесценции микрокристаллов CsPbCl₃, диспергированных в матрице CsCl [4].

2.2.2. Кристалл PbCl₂:Сs. Спектры возбуждения быстрой и медленной компонент полосы люминесценции с $E_{\rm em} = 2.93 \, {\rm eV}$ микрокристаллов CsPbCl₃, собственной люминесценции монокристалла CsPbCl₃ ($E_{\rm em} = 2.954 \, {\rm eV}$), люминесценции АЛЭ кристалла

PbCl₂:Cs с $E_{em} = 3.75 \text{ eV}$ в спектральной области $E_{exc} = 4-10 \text{ eV}$ приведены на рис. 5, *а*. Спектр возбуждения полосы люминесценции АЛЭ матрицы PbCl₂ с $E_{em} = 3.75 \text{ eV}$ и спектр отражения матрицы PbCl₂ показаны на рис. 5, *b*.

Структура спектра возбуждения быстрой и медленной компонент полосы люминесценции микрокристаллов CsPbCl₃ с $E_{\rm em} = 2.93$ eV (кривые *I* и *3* на рис. 5) в энергетическом интервале 4.4 < $E_{\rm exc}$ < 4.9 eV повторяет структуру спектра возбуждения свечения АЛЭ с $E_{\rm em} = 3.75$ eV матрицы PbCl₂ (кривые *4* и *5*). Сходство спектров возбуждения люминесценции микрокристалла CsPbCl₃ и собственной люминесценции АЛЭ матрицы PbCl₂ с $E_{\rm em} = 3.75$ eV в этом спектральном диапазоне указывает на существование определенного механизма передачи энергии электронных возбуждений матрицы PbCl₂ микрокристаллам CsPbCl₃. Тот факт, что спектр возбуждения быстрой компоненты люминесценции микрокристаллов CsPbCl₃ с $E_{\rm em} = 2.93$ eV повторя-

Рис. 5. a — спектры возбуждения быстрой (1) и медленной (3) компонент люминесценции кристалла PbCl₂:Cs ($C_{\rm Cs} = 0.05 \,{\rm mol.\%}$) с $E_{\rm em} = 2.93 \,{\rm eV}$, полосы люминесценции свободных экситонов монокристалла CsPbCl₃ с $E_{\rm em} = 2.954 \,{\rm eV}$ (2), полосы люминесценции кристалла PbCl₂:Cs ($C_{\rm Cs} = 0.05 \,{\rm mol.\%}$) с $E_{\rm em} = 3.75 \,{\rm eV}$ (4); b — спектры возбужения полосы люминесценции матрицы PbCl₂ с $E_{\rm em} = 3.75 \,{\rm eV}$ (5) и спектр отражения матрицы PbCl₂ (6). $T = 10 \,{\rm K}$.

ет спектр возбуждения люминесценции АЛЭ матрицы PbCl₂ с $E_{\rm em} = 3.75 \, {\rm eV}$, возможно, является результатом присутствия быстрой компоненты в люминесценции АЛЭ матрицы. Действительно, согласно результатам исследований, приведенных в [14], кинетика затухания АЛЭ матрицы PbCl₂ с $E_{\rm em} = 3.75 \, {\rm eV}$ характеризуется быстрой ($\tau_t = 0.61 \, {\rm ns}$) и медленной ($\tau_s = 11.8 \, \mu {\rm s}$) компонентами.

Малая эффективность возбуждения медленной и быстрой компонент люминесценции микрокристаллов CsPbCl₃ квантами с энергией $5.5 \leq E_{\rm exc} \leq 10 \, {\rm eV}$ объясняется малой эффективностью возбуждения собственной люминесценции АЛЭ матрицы PbCl₂ в этом энергетическом диапазоне.

Особенности механизма возбуждения свечения микрокристаллов CsPbCl₃ в исследуемом энергетическом диапазоне были выяснены при изучении кинетики затухания люминесценции микрокристаллов.

2.3. Кинетика затухания люминесценции микрокристаллов Cs Pb Cl₃

2.3.1. Кинетика затухания люминесценции микрокристаллов CsPbCl₃, диспергированных матрице CsCl. Кривая кинетики затув хания люминесценции микрокристаллов CsPbCl₃, возбужденной в области прозрачности матрицы CsCl $(E_{\text{exc}} = 3.5 - 6.0 \,\text{eV})$, представлена на рис. 6 (кривая 1). Двуэкспоненциальная аппроксимация кривых затухания микро- и монокристаллов CsPbCl₃, возбужденных в этой же спектральной области, описывается экспонентами с временами затухания соответственно $au_{f1} \approx 0.15$ ns, $\tau_{f2} = 12.1$ ns и $\tau_{f1} = 0.48$ ns, $\tau_{f2} = 7.0$ ns. Уменьшение времени затухания au_{f1} люминесценции микрокристаллов CsPbCl₃ по сравнению с характерным для монокристалла CsPbCl₃ может быть обусловлено проявлением квантово-размерного эффекта.

Кривая кинетики затухания люминесценции микрокристаллов CsPbCl₃ при возбуждении в энергетическом диапазоне 6.0-7.8 eV воспроизводит кривую кинетики затухания полосы излучения одиночных центров Pb²⁺-v_c с $E_{\rm em} = 3.93 \, {\rm eV}$ (кривые 2 и 4 на рис. 6). Кривые затухания люминесценции микрокристаллов описываются временами затухания $\tau_{f1} = 2.6 \,\mathrm{ns}, \ \tau_{f2} = 25 \,\mathrm{ns};$ для одиночных центров Pb²⁺ $-v_c^ \tau_{f1} = 2.4$ ns, $\tau_{f2} = 27$ ns. В обоих случаях присутствует медленная компонента τ_s , длительность которой значительно превышает временные возможности методики, используемой для регистрации медленной компоненты люминесценции. Наличие быстрой и медленной компонет в СЛ кристалла CsCl: Pb для полосы с $E_{\rm em} = 3.93 \, {\rm eV}$ подтверждает сущестование излучательного и метастабильного подуровней релаксированного состояния иона Pb²⁺. Учитывая совпадение кривых кинетики затухания микрокристаллов и отдельных центров, можно ожидать, что длительность медленной компоненты в кинетике затухания люминесценции микрокристаллов находится в миллисекундном временном диапазоне, как это имеет

Рис. 6. Кривые кинетики затухания люминесценции микрокристаллов CsPbCl₃, диспергированных в матрице CsCl, возбужденной при $E_{\text{exc}} = 3.5 - 6.0$ (1), 7.7 (2) и > 14 eVk (3) 4 — кривая кинетики затухания люминесценции отдельных центров Pb²⁺ – v_c^- в матрице CsCl с $E_{\text{em}} = 3.93$ eV, возбужденной в спектральной области $E_{\text{exc}} = 6.0 - 7.8$ eV. T = 10 K.

место для отдельных центров $Pb^{2+}-v_c^-$. Совпадение временны́х параметров люминесценции микрокристаллов и одиночных центров указывает на отсутствие мультипольных механизмов передачи энергии от одиночных центров $Pb^{2+}-v_c^-$ микрокристаллам CsPbCl₃, т. е. люминесценция микрокристаллов при возбуждении в полосах поглощения центров $Pb^{2+}-v_c^-$ обусловлена перепоглощением излучения одиночных центров.

При возбуждении кристалла ClCl: Pb квантами с энергией $E_{\rm exc} > 14 \, {\rm eV}$ кривая затухания кинетики люминесценции микрокристаллов CsPbCl₃ содержит основную временну́ю константу затухания с $\tau_f \approx 1.4 \, {\rm ns}$ (кривая 3 на рис. 6). Данный факт является следствием того, что при $E_{\rm exc} > 14 \, {\rm eV}$ возбуждается ОВЛ матрицы CsCl с временем затухания $\tau \approx 1.4 \, {\rm ns}$, которая эффективно перепоглащается микрокристаллами CsPbCl₃.

Таким образом, кинетика затухания люминесценции микрокристаллов CsPbCl₃ с временем $\tau_f = 0.15$ пѕ наблюдается только при прямом оптическом возбуждении в области прозрачности матрицы CsCl. Наличие компоненты затухания с временем $\tau_f = 1.4$ пѕ является результатом перепоглощения ОВЛ матрицы, возбуждающейся при $E_{\rm exc} > 14$ eV. Перекрывание спектра возбуждения указанных микрокристаллов со спектрами излучения одиночных центров Pb²⁺- ν_c кристалла CsCl: Pb приво-

дит к возникновению медленной компоненты в кинетике затухания люминесценции микрокристаллов CsPbCl₃ с временными константами $\tau_{f1} = 2.6$ ns, $\tau_{f2} = 25$ ns и $\tau_s \approx 1$ ms. Квантово-размерный эффект, возможно, приводит к незначительному уменьшению времени затухания люминесценции микрокристаллов CsPbCl₃, диспергированных в матрице CsCl ($\tau_f = 0.15$ и 0.48 ns для микро- и для монокристаллов CsPbCl₃ соответственно).

2.3.2. Кинетика затухания люминесценции микрокристаллов Cs Pb Cl₃, диспергированных в матрице PbCl₂. Кривые затухания люминесценции микрокристаллов CsPbCl3 при возбуждении в области прозрачности и собственного поглощения матрицы PbCl₂ приведены на рис. 7. В обоих случаях на кривых спада люминесценции можно выделить быструю временную компоненту с $\tau_{f1} = 0.30 \, \text{ns}$, а также более длительные компоненты с временными константами $au_{f2} \approx 2\,\mathrm{ns}$ и $au_{f3} \approx 23\,\mathrm{ns}$. Наличие быстрой компоненты с $\tau_{f1} = 0.30 \, \text{ns}$ в кинетике затухания микрокристаллов CsPbCl₃ при возбуждении в области прозрачности матрицы обусловлено непосредственным возбуждением микрокристаллов как на поверхности, так и в объеме матрицы, а при возбуждении в области собственного поглощения матрицы оно, возможно, обусловлено присутствием незначительного количества микрокристаллов на поверхности матрицы PbCl₂. Кривая кинетики затухания люминесценции монокристалла CsPbCl3, возбужденного в области $E_{\text{exc}} = 3.8 \,\text{eV}$, представлена кривой 3. Как и в случае микрокристаллов CsPbCl₃, диспергированных в матрице CsCl, незначительное сокращение времени затухания люминесценции микрокристаллов CsPbCl₃, диспергированных в матрице PbCl₂, может быть обусловлено проявлением квантово-размерного эффекта $(\tau_{f1} = 0.30$ и 0.48 ns для микро- и монокристаллов CsPbCl₃ cootBetterBenho).

Присутствует также медленная компонента τ_s , длительность которой значительно превышает временны́е возможности используемой методики временны́х измерений. Существование медленной τ_s компоненты в кинетике затухания люминесценции микрокристалла CsPbCl₃, по-видимому, обусловлено перепоглощением свечения АЛЭ матрицы PbCl₂ в кристалле PbCl₂:Cs микрокристаллами CsPbCl₃. Действительно, согласно результатам исследований [14], в кинетике затухания АЛЭ матрицы PbCl₂ доминирует медленная компонента $\tau_s = 11.8 \, \mu s$.

Таким образом, быстрая компонента в кинетике затухания люминесценции микрокристаллов CsPbCl₃ с временем $\tau_{f1} = 0.30$ ns регистрируется в широком энергетическом диапазоне, включая как область прозрачности, так и область собственного поглощения матрицы PbCl₂.

На основании проведенных исследований можно сделать следующие выводы.

1) Длительный (20-100 h) высокотемпературный $(180-220^{\circ}\text{C})$ отжиг кристаллов CsCl:Pb $(C_{Pb} = 0.5 \text{ mol.}\%)$, PbCl₂:Cs $(C_{Cs} = 0.05 \text{ и } 0.5 \text{ mol.}\%)$ приводит к образованию микрокристаллов CsPbCl₃,

Рис. 7. Кривые кинетики затухания люминесценции микрокристаллов CsPbCl₃, диспергированных в матрице PbCl₂, возбужденной в области прозрачности ($E_{\text{exc}} = 3.8 \text{ eV}$) (1) и в области собственного поглощения матрицы PbCl₂ ($E_{\text{exc}} = 14.0 \text{ eV}$) (2), а также люминесценции монокристалла CsPbCl₃, возбужденной квантами с энергией $E_{\text{exc}} = 3.8 \text{ eV}$ (3). T = 10 K.

диспергированных соответственно в матрицах CsCl и PbCl₂.

2) В области прозрачности матрицы CsCl возбуждение люминесценции микрокристаллов CsPbCl₃ реализуется путем прямого возбуждения или в результате перепоглощения излучения одиночных центров Pb² $-v_c^-$. В первом случае верменная константа затухания люминесценции составляет $\tau_f \approx 0.15$ ns, во втором — кривая кинетики затухания воспроизводит кривую, характерную для одиночных центров Pb² $-v_c^-$.

3) В области прозрачности и собственного поглощения матрицы PbCl₂ быстрая компонента с постоянной времени затухания $\tau_f = 0.30$ ns обусловлена прямым возбуждением микрокристаллов CsPbCl₃, а медленная компонента с $\tau_s \approx 10 \,\mu$ s является результатом перепоглощения излучения АЛЭ матрицы PbCl₂.

4) Незначительное сокращение временны́х констант затухания люминесценции микрокристаллов CsPbCl₃, диспергированных в матрицах CsCl и PbCl₂, по сравнению с константой, характерной для мококристалла CsPbCl₃, возможно, обусловлено проявлением квантоворазмерного эффекта.

В заключение авторы выражают искреннюю благодарность Г. Циммереру за помощью в проведении измерений с использованием синхротронного излучения и обсуждение результатов.

Список литературы

- А.С. Волошиновський, В.Б. Михайлик, С.В. Мягкота, М.С. Пидзирайло, И.П. Пашук. УФЖ 38, 7, 46 (1993).
- [2] M. Nikl, E. Mihokova, K. Nitsch, K. Polak, M. Rodova, M. Dusek, G.P. Pazzi, P. Fabeni, M. Gurioli. Chem. Phys. Lett. 220, 1/2, 14 (1994).

- [3] M. Nikl, K. Nitsch, K. Polak, G.P. Pazzi, P. Fabeni, D.S. Citrin, M. Gurioli. Phys. Rev. B51, 8, 5192 (1995).
- [4] С.В. Мягкота. Опт. и спектр. 87, 2, 311 (1999).
- [5] С.В. Мягкота, А.С. Волошиновский, А.В. Глосковский. Опт. и спектр. 88, 4, 598 (2000).
- [6] G. Zimmerer. Nucl. Instr. & Meth. Phys. Res. A308, 1/2, 178 (1991).
- [7] Ал.Л. Эфрос, А.Л. Эфрос. ФТП 16, 7, 1209 (1982).
- [8] Л.Н. Амитин, А.Т. Анистратов, А.И. Кузнецов. ФТТ 21, 12, 3535 (1979).
- [9] И.П. Пашук, Н.С. Пидзырайло, М.Г. Мацко. ФТТ 23, 7, 2162 (1981).
- [10] R. Aceves, V. Babin, M Barboza Flores, P. Fabeni, E. Mihokova, V. Nagirhyi, M. Nikl, K. Nitsch, G.P. Pazzi, R. Perez Salas, S. Zazubovich. J. Phys. Cond. Matter 10, 24, 5449 (1998).
- [11] Р. Кинк, Г. Лийдья, В. Плеханов. Тр. ИФ АН ЭССР 40, 132 (1972).
- [12] R. Kink, T. Avarmaa, V. Kisand, A. Lohmust, I. Kink, I. Martinson. J. Phys. Cond. Matter 10, *3*, 693 (1998).
- [13] M. Kitaura, H. Nakagawa. J. Lumin. 72, 883 (1997).
- [14] K. Polak, D.J.S. Birch, M. Nikl. Phys. Stat. Sol. (b) 145, 741 (1988).