Сверхпроводимость сплавов $(Sn_{1-z}Pb_z)_{1-x}In_xTe$

© Р.В. Парфеньев, Д.В. Шамшур, С.А. Немов*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Санкт-Петербургский государственный технический университет,

195251 Санкт-Петербург, Россия

E-mail: Nemov@twonet.stu.neva.ru

E-mail: D.Shamshur@shuvpop.ioffe.rssi.ru

(Поступила в Редакцию 3 апреля 2001 г.)

В сплавах ($Pb_z Sn_{1-z}$)_{1-x}In_xTe с различными концентрациями свинца (z = 0-0.60) и индия (x = 0.03-0.20) исследовались температурные зависимости сопротивления в интервале температур $T = 0.4 - 4.2 \,\mathrm{K}$ в отсутствие магнитного поля H и в полях до H = 15 kOe. В указанном диапазоне составов сплавов обнаружено падение сопротивления не менее чем на 3-4 порядка. Включение магнитного поля величиной больше критического позволяло восстановить сопротивление образцов до исходного значения. Наблюдаемый скачок сопротивления индентифицирован как сверхпроводящий переход. Критические параметры сверхпроводящего перехода (T_c и H_{c2}) определялись на уровне падения сопротивления до половины его нормального значения. Экспериментально определены зависимости критической температуры сверхпроводящего перехода T_c и второго критического магнитного поля H_{c2} от содержания свинца (z) и индия (x). Полученные данные подтверждают сильную локализацию примесных состояний In и свидетельствуют о примесном характере сверхпроводимости в исследуемом классе материалов. Установлено, что в образцах $(Sn_{1-z}Pb_z)_{1-x}In_x$ Те с увеличением содержания Рb наблюдаются уменьшение T_c и H_{c2} при выходе уровня Ферми E_F , фиксированного полосой примесных резонансных состояний In, из Δ -экстремума и срыв сверхпроводимости при выходе E_F из седловой точки $L\Sigma$ энергетического спектра валентной зоны.

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект 99-02-18156).

В узкощелевых материалах на основе халькогенидов свинца (PbTe, PbSe, PbS) и олова (SnTe) экспериментально обнаружены и исследованы резонансные состояния примесей III группы таблицы Менделеева (In и Tl) [1,2]. Для некоторых составов этих материалов (при расположении уровня Ферми в пределах полосы резонансных состояний, т.е. при частичном заполнении ее электронами) характерно наличие сверхпроводящего перехода с критическими температурами T_c и критическими магнитными полями H_{c2} , на порядок превосходящими (см., например, [1-5]) критические параметры известных сверхпроводящих полупроводниковых соединений без примесей, создающих резонансные состояния на фоне разрешенного спектра электронов в кристаллах. Отметим, что объемный характер сверхпроводимости в Sn_{1-x}In_xTe был установлен независимо при изучении низкотемпературной теплоемкости [6].

В настоящей работе выполнено систематическое исследование влияния содержания свинца z и примеси индия x в сплавах $(Sn_{1-z}Pb_z)_{1-x}In_x$ Те на критические параметры сверхпроводящего перехода.

1. Образцы и методика эксперимента

По металлокерамической технологии [1,2] были изготовлены образцы, состав которых соответствовал химической формуле $(\text{Sn}_{1-z}\text{Pb}_z)_{1-x}\text{In}_x\text{Te}$ (z = 0-0.60, x = 0.03-0.20). Синтез проводился сплавлением в вакууме исходных компонентов полупроводниковой чистоты с последующей закалкой при комнатной температуре. После измельчения слитков до размера зерна $d \sim 0.1 \,\mathrm{mm}$ осуществлялось теплое прессование ($P = 2000 \,\mathrm{kg/cm^2}$). Затем образцы отжигались в вакууме при температуре 600°C в течение 200 h. Рентгеноспектральный микроанализ не выявил наличия следов второй фазы в исследованных образцах.

Низкотемпературные измерения были проведены непосредственно в жидком Не3. Температура 0.4 К достигалась откачкой насыщенных паров Не3 с использованием адсорбционного угольного насоса (охлаждаемого жидким He4). Температурные зависимости удельного сопротивления ρ образцов были исследованы при 0.4-4.2 К в магнитных полях *H* до 15 kOe. Наличие скачка на зависимостях $\rho(T)$ в узком интервале температур $\Delta T \sim 0.1 \,\mathrm{K}$ и восстановление сопротивления образцов в магнитном поле при температурах ниже Т_с свидетельствовали о переходе в сверхпроводящее состояние. Сверхпроводящий переход наблюдался также при исследовании зависимости магнитной восприимчивости ряда образцов от температуры. Критические параметры T_c и $H_{c2}(T)$ определялись из условия $\rho = 0.5 \rho_N$ (ρ_N — сопротивление в нормальном состоянии при $T \leq 4.2 \,\mathrm{K}$). Из зависимостей $H_{c2}(T)$ находились величины производных $|\partial H_{C2}/\partial T|_{T \to T_c}$ для каждого образца; с помощью экстраполяционной формулы

$$H_{c2}(T) = H_{c2}(0) \left[1 - (T/T_c)^2 \right]$$
(1)

и соотношения $H_{c2}(0) = 0.69T_c(dH_{c2}/dT)|_{T_c}$ оценивалось значение критического магнитного поля $H_{c2}(0)$ при T = 0 К.

Концентрация дырок определялась при комнатной температуре из данных по эффекту Холла по формуле

$$p = (eR)^{-1},$$
 (2)

где *R* — коэффициент Холла, *е* — модуль заряда электрона. Полученные в работе экспериментальные данные приведены на рис. 1–6.

Экспериментальные данные и обсуждение результатов

Рассмотрим полученные нами экспериментальные данные. На рис. 1–3 представлены соответственно зависимости критической температуры T_c [7], $|\partial H_{c2}/\partial T|_{T \to T_c}$ и $H_{c2}(0)$ от содержания свинца z в твердом растворе. Указанные зависимости, имеющие ярко выраженный немонотонный характер, подобны. Они имеют вид кривых с максимумами, величина и положение которых существенно зависят от состава сплава (z, x). Наблюдаются следующие тенденции: величины параметров сверхпроводящего перехода растут с увеличением содержания In, при этом максимумы указанных выше зависимостей смещаются в область больших содержаний свинца в сплавах. Срыв сверхпроводимости в сплавах при увеличении содержания индия x также происходит при больших количествах свинца z.

На основе полученных данных с использованием значений ρ_N (рис. 4) были сделаны оценки плотности состояний на уровне Ферми в нормальном состоянии N(0) в соответствии с формулами

$$N(0) = 2.84 \cdot 10^{14} |\partial H_{c2} / \partial T|_{T \to T_c} \rho_N^{-1}, \qquad (3)$$

$$N(0) = 4.83 \cdot 10^{14} H_{c2}(0) / (T_c \rho_N).$$
(4)

Они дали близкие результаты, которые представлены на рис. 5. Как видно из рис. 1 и 5, прослеживается корреляция между зависимостями критической температуры и плотности состояний от состава исследованных сплавов $(z \ u \ x)$.

Рассмотрим влияние примеси In на свойства образцов. Из представленных на рис. 6 данных по холловской концентрации дырок видно, что увеличение количества индия x в сплавах $(Sn_{1-z}Pb_z)_{1-x}In_x$ Те приводит к росту концентрации дырок p и соответственно к продвижению уровня Ферми E_F в глубь валентной зоны. Отметим, что при фиксированном содержании свинца и индия в сплавах $(Sn_{1-z}Pb_z)_{1-x}In_x$ Те наблюдается стабилизация концентрации дырок и уровня Ферми относительно

Рис. 1. Зависимости критической температуры сверхпроводящего перехода T_c от количества свинца z в твердых растворах $(Sn_{1-z}Pb_z)_{1-x}In_xTe$. Здесь и далее содержание индия x в каждой серии образцов указано около соответствующей кривой.

Рис. 2. Зависимости производной второго критического магнитного поля по температуре $|\partial H_{c2}/\partial T|_{T \to T_c}$ от количества свинца *z* в твердых растворах $(Sn_{1-z}Pb_z)_{1-x}In_x$ Те.

Рис. 3. Зависимости второго критического магнитного поля $H_{c2}(0)$, экстраполированного к нулю температуры, от количества свинца *z* в твердых растворах $(Sn_{1-z}Pb_z)_{1-x}In_xTe$.

Рис. 4. Зависимости удельного сопротивления в нормальном состоянии (T = 4.2 K) ρ_N от количества свинца *z* в твердых растворах ($\text{Sn}_{1-z}\text{Pb}_z$)_{1-*x*} In_x Te.

Рис. 5. Зависимости плотности состояний на уровне Ферми N(0) от количества свинца *z* в твердых растворах $(Sn_{1-z}Pb_{z})_{1-x}In_{x}Te$.

Рис. 6. Зависимость холловской концентрации дырок p от содержания свинца z в сплавах $(Sn_{1-z}Pb_z)_{1-x}In_xTe$.

введения в шихту образцов избытка теллура, который проявляет акцепторное действие в соединениях $A^{IV}B^{VI}$. Более подробно этот эффект изучался нами на примере сплава $(Sn_{0.8}Pb_{0.2})_{0.95}In_{0.05}Te_{1+y}$ [8]. Стабилизация E_F и сверхпроводящий переход в области гелиевых темпе-

ратур, наблюдаемые нами в сплавах $(Sn_{1-z}Pb_z)_{1-x}In_xTe$, характерны для соединений $A^{IV}B^{VI}$ с примесями III группы, создающими резонансные состояния глубоко в валентной зоне [1–5]. Исходя из этого, попытаемся интерпретировать полученные данные в рамках концепции резонансных состояний In с учетом перестройки энергетического спектра сплавов $(Sn_{1-z}Pb_z)_{1-x}In_xTe$ при увеличении содержания свинца.

Рассмотрим более подробно данные по критической температуре. При фиксированном содержании индия в сплаве (например, x = 0.05) по мере увеличения содержания свинца в твердом растворе наблюдается рост T_c , который при z > 0.2 сменяется убыванием T_c , так что при z > 0.4 критическая температура становится меньше 0.4 К (рис. 1) при одновременном монотонном уменьшении холловской концентрации дырок (рис. 6). Поскольку положение уровня Ферми в наших сплавах фиксировано полосой примесных состояний In, как отмечалось выше, уменьшение p следует связать со смещением резонансных состояний In к вершине валентной зоны.

Согласно результатам выполненных ранее исследований [1,2], полоса резонансных состояний содержит два состояния на атом примеси III группы и один валентный электрон, не участвующий в связях с халькогенами. В $A^{IV}B^{VI}$ металлы (Pb и Sn) проявляют валентность + 2, а у In, замещающего атомы металла в катионной подрешетке, всего три валентных электрона, два из которых участвуют в химической связи с атомами халькогена. В связи с этим резонансная полоса In заполнена ровно наполовину своими электронами, и уровень Ферми совпадает с ее центром.

При размещении примесной полосы на фоне состояний валентной зоны (ниже ее вершины) электроны из расположенных выше зонных состояний переходят в примесные состояния, увеличивая степень их заполнения электронами, так что концентрация дырок в валентной зоне равна количеству электронов, перешедших в примесные состояния. В этом случае степень заполнения полосы In электронами можно приближенно оценить по формуле (аналогично [3])

$$k = 0.5 + p/2N_{\rm In}.$$
 (5)

В выражении (5) в качестве *р* мы использовали холловскую концентрацию дырок, *N*_{In} — концентрация примеси индия в сплаве.

При смещении полосы In к потолку валентной зоны концентрация электронов, перешедших в примесные состояния (и дырок в валентной зоне), уменьшается. В соответствии с (5) степень заполнения k примесной полосы приближается к 0.5, а уровень Ферми E_F смещается к центру примесной полосы, что и вызывает наблюдаемый рост критических параметров сверхпроводящего перехода в изучаемых сплавах при увеличении содержания свинца (рис. 1–3). Отметим, что качественно характер экспериментальных зависимостей не меняется с увеличением количества индия $N_{\rm In}$ от 4 до 20 at.%,

Рис. 7. Качественный вид зонного спектра дырок сплавов Sn₁₋₋, Pb₇Te (согласно данным [10,11]).

что свидетельствует о сохранении резонансного характера примесных состояний In в исследованных сплавах и тем самым подтверждает их сильную локализацию. Согласно [9], радиус локализации примесных состояний индия в твердом растворе Pb_{0.78}Sn_{0.22}Te приблизительно равен 6 Å.

Полученные нами оценки плотности состояний на уровне Ферми (рис. 6) находятся в согласии с рассматриваемой моделью. Как отмечалось выше, с ростом z происходит смещение E_F к вершине валентной зоны, при этом уменьшается плотность зонных состояний. Это должно приводить к уменьшению взаимодействия зонных и примесных состояний [2,3] и соответственно к сужению полосы индия и увеличению плотности примесных состояний. По-видимому, эти процессы в значительной мере компенсируют друг друга, и в результате наблюдается мало изменяющаяся суммарная плотность состояний (при z < 0.3-0.4 в зависимости от содержания In в сплавах, см. рис. 5).

При дальнейшем увеличении содержания свинца в сплавах во всех сериях образцов с различным содержанием индия происходит быстрое уменьшение критических параметров T_c , $H_{2c}(0)$, $|\partial H_{c2}/\partial T|_{T \to T_c}$ и плотности состояний, которое мы связываем с выходом уровня Ферми из дополнительных экстремумов валентной зоны.

Рассмотрим серии образцов сплавов с относительно малым содержанием индия ($x \le 0.05$). Для наиболее подробно изученной серии образцов ($\text{Sn}_{1-z}\text{Pb}_z$)_{0.95}In_{0.05}Te наблюдается отчетливая корреляция зависимостей критических параметров и плотности состояний от содержания свинца *z* в сплавах с положением уровня Ферми (концентрацией дырок *p*, приведенной на рис. 6) в спектре валентной зоны нелегированных индием сплавов (рис. 7). Из сопоставления данных, представленных на рис. 6, 7, видно, что при выходе E_F из Δ -экстремума, соответствующего концентрации дырок $p \approx 5 \cdot 10^{20}$ сm⁻³, начинается резкое уменьшение T_c , $H_{c2}(0)$ и N(0). Срыв сверхпроводимости наблюдается при выходе уровня Ферми из седловой точки $L\Sigma$, соответствующей $p \approx (2-3) \cdot 10^{20} \, {\rm cm}^{-3}$. При бо́льших содержаниях индия ($x \ge 0.08$) в твердых растворах $({\rm Sn}_{1-z}{\rm Pb}_z)_{1-x}{\rm In}_x{\rm Te}$ подобное количествен-

ное согласие данных по сверхпроводящему переходу (рис. 1–3), холловской концентрации дырок (рис. 6) с концентрациями, соответствующими критическим точкам зонного спектра сплавов (рис. 7), не наблюдается. Возможно, это связано с влиянием примеси In на энергетический спектр сплавов.

Таким образом, в работе получены следующие результаты. Экспериментально установлены зависимости критической температуры сверхпроводящего перехода T_c и второго критического магнитного поля H_{c2} от содержания свинца (z) и индия (x) в сплавах $(Sn_{1-z}Pb_z)_{1-x}In_x$ Те. Полученные данные подтверждают корреляцию в положении примесных состояний In в энергетическом спектре сплавов с параметрами сверхпроводящего состояния, что свидетельствует о примесном характере сверхпроводимости в исследуемом классе материалов. Установлено, что срыв сверхпроводимости в образцах $(Sn_{1-z}Pb_z)_{1-x}In_x$ Те наблюдается при выходе уровня Ферми, фиксированного полосой примесных резонансных состояний In, из Δ -экстремума и $L\Sigma$ -седловой точки энергетического спектра дырок.

Список литературы

- [1] В.И. Кайданов, Ю.И. Равич. УФН 145, 1, 51 (1985).
- [2] С.А. Немов, Ю.И. Равич. УФН 168, 8, 817 (1998).
- [3] В.И. Кайданов, С.А. Немов, Р.В. Парфеньев, Д.В. Шамшур. Письма в ЖЭТФ **35**, *12*, 517 (1982).
- [4] Г.С. Бушмарина, И.А. Драбкин, В.В. Компаниец, Р.В. Парфеньев, Д.В. Шамшур, М.А. Шахов. ФТТ 28, 4, 1094 (1986).
- [5] P.P. Konstantinov, R.V. Parfeniev, M.O. Safonchik, D.V. Shamshur, S.A. Nemov, J. Stepien-Damm, D. Kaczorowski. Physica C333, 31 (2000).
- [6] H. Miyauchi, T. Nakaima, E. Kanda. J. Phys. Soc. Jap. 34, 282 (1973).
- [7] R.V. Parfeniev, D.V. Shamshur, S.A. Nemov. In: Proc. 24th Int. Conf. on the Physics of Semiconductors (ICPS 24) / Ed. D. Gershoni. Jerusalem, Israel (August 2–7, 1998). World Scientific Publ., Singapore (1998) (on CD-ROM).
- [8] С.А. Немов, Р.В. Парфеньев, Д.В. Шамшур. ФТТ 41, 12, 2132 (1999).
- [9] Ю.И. Равич, С.А. Немов, В.И. Прошин. ФТП 29, 8, 1448 (1995).
- [10] Г.С. Бушмарина, И.А. Драбкин, М.А. Квантов, О.Е. Квятковский. ФТТ **32**, *10*, 28 (1990).
- [11] А.В. Березин, С.А. Немов, Р.В. Парфеньев, Д.В. Шамшур. ФТТ **35**, *1*, 53 (1993).