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Connection between Slab and Cluster Models for Crystalline Surfaces
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Different models for the theoretical description of bare crystalline surfaces are compared and discussed in terms
of stoichiometry and conservation of the point symmetry. While infinite models such as the semi-infinite model or
the slab model in general preserve the symmetry of the perfect crystal surface, special care has to be taken when
finite cluster models are considered. The connection between molecular cluster choice and surface unit cell of the
slab model is demonstrated for metal oxides such as MgO, TiO2, V2O5, and Al2O3, analyzing how atoms of the
primitive unit cell of the parent three-dimensional crystal are distributed in different planes of slab and cluster models.
General rules for the construction of finite cluster models based on stoichiometry and symmetry considerations are
given and illustrated with calculations on water adsorption at rutile (110).

Crystalline surfaces are of high importance in many
chemical and physical processes [1,2]. They are therefore
subject of an increasing number of studies, both experimen-
tal and theoretical [3]. In the last decades, quantum-chemical
calculations have become an important tool for investigations
of structural, electronic and catalytic properties of surfaces.
Methodological developments and the rapid improvement
of computer hardware enabled theorists to treat systems of
increasing complexity. Thereby it was possible not only to
reproduce experimental findings with increasing accuracy,
but also to aid in the interpretation of experimental results.

For simulations of the electronic structure of surfaces of
crystalline solids three basic approaches are used: cluster,
slab, and semi-infinite crystal models [4]. The latter is the
most appropriate, because it takes into account an infinite
number of atoms of the crystal below the surface [5]. Slab
and cluster models are nevertheless by far more popular,
since they are more feasible from the computational point
of view. The cyclic cluster model [4] is intermediate between
slab and molecular cluster models. It takes into account the
translational symmetry of the surface but considers only a
finite number of interatomic interactions within a strictly
defined region.

The choice of the cluster model (both molecular and
cyclic) for a surface allow to employ all those quantum
chemical techniques that have been developed for molecular
systems. It is also possible to study defects or adsorption
reactions in the limit of low coverage. Care has to be taken in
the selection of cluster size and shape due to the unavoidable
presence of boundary effects. Different schemes have been
developed to reduce boundary effects in the cluster model,
either by embedding procedures or by the introduction of
cyclic boundary conditions. Slab models eliminate two-
dimensional boundary effects and are widely used for the
study of periodic surface structures.

In the present work, the connection between slab and clus-
ter models based on a symmetry analysis of the crystalline
surface is considered. As far as we know, this connection has

not been investigated explicitly before, although it is implied
in many surface studies using molecular clusters as a model.

For some metal oxides it is compared how atoms in
the primitive unit cell of the three-dimensional crystal are
distributed in different atomic planes of slab models and clus-
ters. General rules for the construction of molecular cluster
models for surface simultanions based on considerations of
stoichiometry and symmetry are suggested.

In section 1, infinite models of surfaces, the semi-infinite
crystal model and the slab model, are briefly discussed. The
relationship between unit cells of two-dimensional (2D) slab
models and the three-dimensional (3D) bulk unit cell is
investigated. Section 2 gives a description of finite models,
the cyclic cluster and the molecular cluster model, and their
connection with the slab model. The results of calculations
of molecular clusters with the same stoichiometry but diffe-
rent arrangements of atoms are compared for the adsorption
behavior towards water at rutile(110).

1. Infinite Models of Surfaces

1.1. S e m i - I n f i n i t e C r y s t a l M o d e l . The sym-
metry group of the semi-infinite crystal model contains,
in addition to translations in the surface plane, only the
rotations and mirror reflections which keep the atoms in
the planes parallel to the surface.

The model of a semi-infinite crystal turns out to be
very difficult to realize in calculations of real systems. A
simplification of this model could take into account a finite
number of interacting layers parallel to the surface. In this
case, the 2D translation symmetry in the surface plane is
maintained. This simplified model is known as the slab
model of the surface [6].

1.2. S l a b M o d e l . The symmetry group of a slab
of finite thickness allows to perform symmetry operations
that move the atoms out of the plane of the surface and
bring them into equivalent positions. These are space
diperiodic groups DG in three dimensions (layer groups).
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Table 1. Distribution of the Bulk Primitive Unit Cell Atoms over Planes in the One-Layer Slab Model of Surfaces

Labeling of Atoms
Surface Plane Lattice

Atomic Distribution
Symmetry Group

in the Bulk Unit Cell in Planes

MgO (001) Square (1) 1,2 DG61− P4/mmm(D1
4h − G123)

(primitive)
1 — Mg, 2 — O

MgO (001) Square (1) 1,2,5,6 DG61− P4/mmm(D1
4h − G123)

(conventional) (2) 3,4,7,8
1–4 — Mg
5–8 — O

TiO2 (110) Rectangular (1) 3 DG37− Pmmm(D1
2h − G47)

(rutile) (2) 1,2,5,6
1, 2 — Ti (3) 4
3–6 — O

TiO2 (001) Square (1) 3 DG55− P4mmm(C1
4v − G99)

(anatase) (2) 1
1, 2 — Ti (3) 4
3–6 — O (4) 5

(5) 2
(6) 6

V2O5 (001) Rectangular (1) 7,8 DG37− Pmmm(D1
2h − G47)

1–4 — V (2) 3,4
5–8 — O (3) 9,10,11,12,13,14
9–12 — O (4) 1,2
13, 14 — O (5) 5,6

Al2O3 (111) Hexagonal (1) 1 DG66− P3̄ (C1
3i − G147)

1–4 — Al (2) 8,9,10
5–10 — O (3) 2

(4) 4
(5) 5,6,7
(6) 3

The slab model is now widely used in Hartree-Fock LCAO
calculations of crystalline surfaces [6] and also in DFT
calculations [7,8].

The layer group contains a subgroup of 2D translations
T(2) with elements (E|an) where an = n1a1 + n2a2 is an
arbitrary translation vector of the 2D (plane) lattice, a1 and
a2, are primitive unit cell translation vectors, defining a 2D
Bravais lattice.

Let us consider the layer groups for the slab models of
the following surfaces: (001) in MgO crystal (G = Fm3̄m),
(110) in the rutile structure of TiO2 (P42/mnm), (001) in
the anatase structure of TiO2 (I41/amd), (001) in the V2O5

crystal (Pmmn), and the (111) plane of Al2O3 (P3̄).
In the slab model, the surface plane has a fixed orientation

relative to the bulk symmetry group elements. All the atoms
of the bulk primitive unit cell are distributed within one
or several planes with the same 2D translation symmetry.
These planes of atoms form a layer which is by definition
stoichiometric. Of practical importance for surface studies
using slab models is the dependence of the calculated
properties on the number of layers in the slab. The point
symmetry group of a slab generally depends on the number
of layers included.

In Table 1, the distribution of the bulk structure primitive
unit cell atoms over the atomic planes in one-layer slab
models is given. For the MgO crystal one may use not only
the bulk primitive unit cell consisting of two atoms, but also
the conventional cell consisting of an 8-atomic cubic cell with

Figure 1. Unit cell of an MgO (001) surface slab derived from the
conventional unit cell of the 3D lattice. Gray spheres: Mg, white
spheres: O.
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Figure 2. Conventional 3D rutile unit cell (a) and two unit cells
of a rutile (110) surface slab derived from the primitive unit cell of
the 3D lattice (b). Gray spheres: Ti, white spheres: O.

Figure 3. Conventional 3D anatase unit cell (a) and two unit cells
of an anatase (001) surface slab derived from the primitive unit cell
of the 3D lattice (b). Gray spheres: Ti, white spheres: O.

two planes of atoms (Fig. 1). A rutile (110) surface layer
consists of three planes of atoms (Fig. 2, a); when choosing
the one-layer slab model one takes the following order of
planes: oxygen plane, mixed oxygen-titanium plane, oxygen
plane (Fig. 2, b). Such a layer choice ensures the zero dipole
moment in the slab [6]. For the anatase (001) surface, the
six atoms of the primitive bulk unit cell are distributed over
six different planes (Fig. 3, a); so that one layer consists of
six atomic planes (Fig. 3, b). The representative atoms are
labeled in Table 1. In the case of the (001) surface of V2O5

crystal (Fig. 4, a), the layer consists of five atomic planes
(Fig. 4, b and Table 1). In the vanadia bulk structure there
are three types of non-equivalent oxygen atoms with different
coordination. In the one-layer slab model, these atoms
appear equally distributed over three planes of atoms. The
primitive bulk unit cell of corundum Al2O3 (rhombohedral
lattice) is shown in Fig. 5, a. This unit cell contains two
formula units. If the (111) surface is considered, the ten
atoms are distributed over six different atomic planes as
shown in Fig. 5, b and Table 1. Alternatively, it is also
possible to choose the hexagonal unit cell which contains
six formula units. The same surface is then labeled (0001)
and the 30 atoms of the bulk unit cell are distributed over
12 atomic planes. The slab model is, in fact, an infinite
model of a surface since 2D periodicity of the system is
maintained. For the computational schemes based on the
use of plane waves, the 3D periodicity is restored in so
called multislab models considering an infinite number of
identical slabs regularly spaced along the normal to the
surface (a typical separation is 10 a.u.) [6].

The most common application of the slab model is the
study of regular adsorption phenomena. Both the monolayer
of the adsorbed species (with the same 2D periodicity as the
slab) and lower coverages can be studied in the slab model.
In the latter case, the 2D supercell approach is used: the
two translation vectors a1, a2 defining the plane lattice are

Figure 4. Conventional 3D V2O5 unit cell (a) and two unit cells
of a V2O5 (001) surface slab derived from the primitive unit cell of
the 3D lattice (b). Gray spheres: V, white spheres: O.
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Figure 5. Rhombohedral 3D Al2O3 unit cell (a) and unit cell of
a Al2O3 (111) surface slab derived from the primitive unit cell of
the 3D lattice (b). Gray spheres: Al, white spheres: O.

transformed with the integer matrix l:

A j =
2∑

i=1

l ji ai , det l = L > 1. (1)

The 2D supercell size is defined by the number of primi-
tive unit cells L in the 2D supercell. The transformation (1)
is called symmetric, if the point symmetry of the supercell
2D lattice is the same as for the original 2D lattice [9]. The
slab-supercell approach introduces a new 2D periodic system
and can be treated by the same band theory tools, as the slab
itself. The supercell model is now popular in 3D periodic
crystals when local defects are studied [10,11]. There are
no principal differences in the supercell use in 2D and 3D
periodic systems. The transformation (1) in the direct lattice
generates the transformation of the reciprocal lattice:

b j =
2∑

i=1

(
l−1
)

i j
Bi (2)

where Bi, b j are the translation vectors of the original and
transformed reciprocal lattices, respectively. The new 2D
Brillouin zone (BZ) turns out to be L times smaller, so that
L points in the initial BZ coincide:

K(k)
l = k +

2∑
j=1

ql j b j (3)

where ql j are integers and k is an arbitrary vector in the
small BZ.

Thus, in the slab-supercell model the folding of BZ is
used, corresponding to a 2D direct lattice, but the system
in consideration remains infinite. The adsorbed species
in this model are repeated periodically, their distance and
interaction with each other depends on the supercell size.
Some examples of the band structure for the slab-supercell
model are considered, for example in [6].

In surface simulations, other models are also used that are
based on the consideration of finite systems.

2. Finite Models of Surfaces

2.1. C y c l i c c l u s t e r s . The cyclic cluster (CC) model
of surfaces [12–20] is connected with the slab-supercell
approach, but there is a difference due to the different
introduction of cyclic boundary conditions (CBC). In the
latter approach, these conditions are, in fact, introduced for
a very large system, e. g., the main region of the 2D periodic
plane, so that the band theory methods are used in slab
calculations. In the former, the CBC are introduced for
the cluster itself, so that the model turns out to be finite.
The convergence of the results to the slab values must be
investigated by increasing the CC. But the advantages of the
CC approach are evident:

a) the spurious boundary effects of molecular clusters
(discussed in section 2.2) are absent;

b) the periodicity of the adsorbed species or the defect is
excluded because the CC is a finite system;

c) there exists a one-to-one symmetry correspondence
between the electronic states of the 2D CC and the band
states of the corresponding slab model.

Let us consider in more detail this correspondence. The
CC model is based on use of the transformation (1) in
the 2D direct lattice. However, the CBC are introduced
with the translation vectors A j ( j = 1, 2): for one-
electron Bloch function Ψnk(r) it is assumed that the relation
Ψnk(r) = Ψnk(r + A j) = exp(+ikA j)Ψnk(r) is fulfilled.
Therefore the introduction of CBC defines those irreducible
representations K of the 2D translation group for which

exp(+iK(0)A j) = 1, j = 1, 2, (4)

i.e. those K(0) which satisfy Eq. (3) for k = 0. Using (1),
(4) and expressing K(0) =

∑2
i=1 K(0)

i Bi , one obtains

2∑
i=1

2∑
i′=1

K(0)
i l ji ′(ai′Bi) =

2∑
i=1

2∑
i′=1

K0
i l ji ′2πδi,i′

= 2π
2∑

i=1

K(0)
i l ji , j = 1, 2. (5)

To satisfy (4) the 2D wave vector components are defined
by relation

2∑
i=1

ki l ji = mj , j = 1, 2, (6)

where mj are integers.
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Figure 6. Brillouin zones of square (a) and rectangular (b)
2D lattices.

Eq. (6) is always satisfied for the Γ point of BZ (K = 0),
so that the CC reproduces the states at the Γ point of the
2D BZ independently of its choice. However, for (K 6= 0)
points of a given 2D lattice the set of the electronic states
reproduced in the CC model depends on the choice of the
l matrix in (1).

Let us consider as examples two plane lattices, square
(MgO (100) and anatase TiO2 (001) surfaces), and rectan-
gular (TiO2 rutile (110) and V2O5 (001) surfaces).

The corresponding 2D BZ are given in Fig. 6. Let us
choose 2D CC for square lattice in such a way that C4v point
symmetry is not broken. The smallest CC corresponds to

l =

(
1 −1
1 1

)
, L = 2, (7)

so that Eq. (6) is satisfied for Γ (0, 0) and M( 1
2

1
2 ) points

of 2D BZ. The corresponding point groups of these two k
points are the same, i. e. (C4v). The 2D unit cell is two times
larger than the primitive one. For transformation (1) with
matrix

l =

(
2 0
0 2

)
, L = 4, (8)

the corresponding CC reproduces the states at Γ, M and X
(2 rays) k vector stars. Further increase of the CC allows
to reproduce not only symmetry points of 2D BZ but also
points from the symmetry directions. In particular, for

l =

(
3 0
0 3

)
, L = 9, (9)

the following k points satisfy (6): Γ (0, 0),
4∆
(

1
3 0,− 1

3 0, 0 1
3 , 0− 1

3

)
, 4Σ

(
1
3

2
3 ,

2
3

1
3 ,

1
3

1
3 ,

2
3 ,

2
3

)
. When the k

points of 2D BZ, satisfying Eq. (6), are found, the induced
representations (IR) of DG space groups have to be used
to find the symmetry of CC electron states. To construct
the IR table of a given DG, the table of the IR for the
corresponding triperiodic group may be used [5]. In
particular, to obtain the table of IR for DG61 (symmetry
group of cyclic clusters of MgO (001) surface) the table
of IR is for the related space group G123(D1

4h) has to be
used. This table gives the connection between irreducible
representations of site symmetry point groups of DG61 and
those of the space group itself. For the symmetry directions
∆,Σ,Y, the compatibility relations have to be used.

For the rectangular lattice, transformation matrix (7) leads
to a CC reproducing the Γ (0, 0) and S

(
1
2

1
2

)
points of

the 2D BZ (Fig. 6). The corresponding CC for transfor-
mation (8) reproduces states at Γ (0, 0), X

(
1
2 0
)
, Y
(
0 1

2

)
,

and S
(

1
2

1
2

)
. Further increase of the CC using transforma-

tion (9) allows to reproduce the symmetry point Γ (0, 0)
and symmetry directions D

(
1
3 0,− 1

3 0
)
, ∆

(
0 1

3 , 0 − 1
3

)
, and

Σ
(

1
3

1
3 ,−

1
3

1
3 ,

1
3−

1
3 ,−

1
3−

1
3

)
. This consideration clarifies the

symmetry connection between the CC model and supercell-
slab models.

The scheme of CC choice in consideration was ap-
plied [21] to calculate the adsorption geometry for organic
adsorbates on a rutile (110) surface. The INDO parametriza-
tion scheme was modified to reproduce experimental results
for geometries of carbon and nitrogen containing molecules.
The CC representing the rutile (110) surface [21] consists of
120 atoms. It includes two layers of 5×2 2D unit cells with
6 atoms in each 2D unit cell.

2.2. M o l e c u l a r c l u s t e r s . The molecular cluster
(MC) model is extremely popular in surface simulations
because of its simplicity, flexibility and the possibility to
use the standard techniques of molecular quantum che-
mistry [4,22–25]. In the MC approach, a crystal with a
surface is modeled by a finite (molecular) system consisting
of the atoms on the surface and of some atomic planes
nearest to it. The 2D periodicity of the surface is not
taken into account, so that the symmetry of such a model
is described by one of the crystallographic point groups. In
adsorption studies, the adsorbed species are included in the
cluster–adsorbate systems.

A MC is cut out from the slab to simulate a portion of
the surface, so that spurious effects arise, related to the
limited cluster size and to the presence of the boundary.
To eliminate these effects the dangling bonds are saturated
either by hydrogen atoms or pseudoatoms, or the whole
cluster is embedded in the external field simulating the
influence of the bulk crystal [24,26,27].

In the MC model, the results critically depend on the
choice of the cluster size, stoichiometry and shape. Ne-
vertheless, the MC model can provide useful information if
the cluster is properly chosen and the influence of its size is
investigated.

In the following, we suggest a number of general rules for
the generation of MC suitable for surface simulations based
on the connection between the MC and the slab model.
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Figure 7. Rutile (110) surface of size 1 × 1 simulated with 1–4-
layer clusters of types A and B. Black spheres: Ti, white spheres: O,
shaded spheres: additional O added to achieve stoichiometry.

Figure 8. Rutile (110) surfaces of size 3 × 1, 3 × 3, and 5 × 3 simulated with two-layer clusters of types A and B. Black spheres: Ti,
white spheres: O, shaded spheres: additional O added to achieve stoichiometry.

We are aware of the fact that in previous studies these rules
have been intuitively applied, in most cases without explicitly
considering the relationship between periodic and molecular
models. Nevertheless, we believe that it might be useful for
future surface studies to consider these rules in order to
minimize artefacts of the models:

a) the clusters correctly reflect the stoichiometry of the
bulk crystal and are electro-neutral;

b) atoms on the crystal surface should be equivalent on
the cluster surface except for corners and edges;

c) the average coordination of all cluster atoms is as close
as possible to that on the crystal surface;

d) as many symmetry elements of the crystal surface as
possible are retained in the cluster;

e) an extension to rule a) is that each layer of the cluster
should have the stoichiometry of the crystal.

In fact, such principles of the MC choice ensure the
simulation of the crystal surface as close as possible and
are directly connected with the 2D periodical slab model.
By using 2D unit cells as basic units of model clusters, it
is possible to increase the cluster size in a systematical way
and thereby to study the convergence behavior of calculated
surface properties.

As examples of MC model applications to surface stu-
dies using some of the above mentioned rules there may
be considered calculations of MgO, TiO2 (rutile, anatase
structures), and Cr2O3 (corundum structure) surfaces and
adsorption of small molecules on them [23–25,28–37]. But it
is also possible to find examples in the literature where these
rules have not been applied [38,39] and in part unphysical
results were obtained.
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Table 2. MSINDO Adsorption Energies (kJ/mol) for Molecular
and Dissociative Water Adsorption on Rutile (110) Calculated with
Relaxation. The Clusters Correspond to Those Presented in Figs. 7
and 8

Cluster
Type A Type B

molecular dissociative molecular dissociative

Ti5O10 51 39 70 201
Ti9O18 139 −24 94 107
Ti14O28 66 8 92 143
Ti18O36 157 192 129 162

Ti49O98 120 151 119 157

In MgO and NaCl crystals, the MC were chosen in such a
way [33] that they simulate the supercell of the surface and
include several layers of the bulk crystal. For these crystals,
the stoichiometry of the MC chosen was ensured by such a
choice.

For more complicated systems, e. g. TiO2 structures,
the stoichiometry of the MC is only ensured when several
additional oxygen atoms are added. There are two principle
ways to add these additional atoms. They can be placed
at positions of the regular surface around the cluster. This
way is denoted as type A as shown in Figs. 7 and 8. In
some cases, this procedure leads to clusters that do not
correspond to rules d) and e). Another possibility is to place
the additional atoms for saturation not at regular positions
of the crystalline lattice so that rules d) and e) are fulfilled.
Examples of this second type B of cluster generation are
presented in Figs. 7 and 8. If all layers of a multi-layer
cluster have the same stoichiometry, artificial polarization is
reduced which can affect the calculated surface properties.
This effect is investigated in the next section.

2.3. N u m e r i c a l r e s u l t s . In order to study the effect
of the distribution of saturation atoms on calculated proper-
ties of crystalline surfaces, we have selected the rutile (110)
surface for new MSINDO calculations. A large number of
theoretical studies have been performed using the MC model
for the simulation of this surface [28,30–32,34–39]. We
used the semi-empirical SCF MO method MSINDO [40],
the successor of the SINDO1 method that was successfully
applied in studies of metal oxide surfaces [23–25,28,29].
Water was adsorbed in molecular and dissociated form on
the clusters Ti5O10, Ti9O18, Ti14O28, and Ti18O36 (Fig. 7)
chosen in accordance with the rules suggested here. Ne-
vertheless, even if these rules are applied, several different
types of clusters may be constructed. Two types of possible
cluster models were used. In type A clusters, already
used previously [28], the additional oxygen atoms needed
to ensure total stoichiometry (shaded in Fig. 7) were placed
at regular lattice positions. In type B clusters, considered by
us for the first time, the additional oxygen atoms were placed
at non-lattice positions in order to maximize symmetry
of the clusters and to reduce polarization as discussed in
the previous section. The adsorption energies calculated
with these small cluster models are presented in Table 2.

The geometries of the clusters were optimized within the
symmetry of the rutile structure. In model type B, there
are one or two more degrees of freedom for those oxygen
atoms that are in non-lattice positions. For the cluster–water
systems, the Cartesian coordinates of all water atoms and
of the two surface atoms close to the oxygen atom and
the hydrogen atom of water are optimized. The adsorption
energy is calculated as the difference of the total energies of
the isolated systems and the cluster–H2O system. Therefore,
positive values indicate a stabilization.

A comparison is made with the results from calculations
on a much larger cluster, Ti49O98 (Fig. 8), which is a better
representation of the surface. From Table 2 it can be seen
that the different distribution of additional oxygen atoms in
cluster types A and B has a substantial influence on the
calculated adsorption energies. The variation of adsorption
energy with an increasing number of layers is significantly
reduced if model type B is considered. Even for rather
small systems the adsorption energies are relatively close
to that of the largest cluster Ti49O98. The most important
difference between the two types of models is that only
for type B the dissociative adsorption is always more stable
that the molecular form. The relative stability of the two
forms of water on the rutile (110) surface is still a matter
of debate [36]. We do not want to engage ourselves here
in this controversy, and focus on the convergence of results
obtained for clusters with increasing size.

The comparison of types A and B of the largest model
Ti49O98 show that the influence of the additional atoms
is negligible due to their large distance to the adsorption
position. This indicates that in this case it is rather the
description of the local environment near the adsorption site
than the effect of a global polarization of the cluster that
is responsible for the differences observed for the smaller
clusters.

3. Conclusion

The consideration of symmetry in models of crystalline
surfaces (infinite-slab model and finite MC and CC models)
allows to give general criteria for the choice of the MC used
to simulate the crystalline surface. Based on the distribution
of atoms of the bulk primitive unit cell over atomic planes for
a given surface orientation, stoichiometric and electro-neutral
clusters are chosen. As many point symmetry elements of
the slab model as possible are retained in the cluster. Surface
atoms of the cluster have equivalent surrounding, if they are
equivalent in the slab or the CC, except for corners and
edges. If the cluster contains several layers, each of them
must have the same stoichiometry.

The numerical results for the adsorption behavior of ru-
tile (110) towards water with different clusters demonstrate
that convergence to the methodological limit is significantly
improved if the suggested criteria are taken into account.
Since the underlying considerations are of general nature,
they can be applied also to cluster models of surfaces of
other systems.
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