Анизотропия оптического поглощения lpha-MnS

© И.С. Эдельман, О.Б. Романова, Л.И. Рябинкина, Г.М. Абрамова, В.В. Марков

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия E-mail: ise@iph krasnoyarsk.su

(Поступила в Редакцию 29 августа 2000 г. В окончательной редакции 18 декабря 2000 г.)

Впервые исследованы спектры оптического поглощения монокристалла α -MnS для плоскости (100) в интервале энергий от 8 \cdot 10³ до 22 \cdot 10³ cm⁻¹ и их температурное поведение в интервале от 86 до 300 К. Сравнение этих спектров со спектрами для плоскости (111) выявило существенную анизотропию поглощения в неполяризованном свете. Она заключается в появлении значительно более сильного расщепления самой низкоэнергетической полосы в случае плоскости (100) (по сравнению с плоскостью (111)). Величина расщепления при понижении температуры уменьшается. Предполагаются возможные механизмы обнаруженной анизотропии.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант № 00-02-81059 Бел. 2000а).

Благодаря обнаружению в твердых растворах Fe_rMn_{1-r}S эффекта колоссального магнитосопротивления [1] возобновился интерес к исследованию физических свойств моносульфида марганца, на основе которого получены эти вещества. Монокристалл *α*-MnS имеет гранецентрированную кубическую решетку (ГЦК) типа NaCl, которая при уменьшении температуры претерпевает ромбоэдрическое искажение вдоль диагонали куба в плоскости (111). Согласно [2], структурный переход в α -MnS наблюдается при $T_s = 162 \pm 2$ K, магнитный переход антиферромагнетик-парамагнетик реализуется при $T_N = 150 \,\mathrm{K}$ [3]. Моносульфид α -MnS в парамагнитной фазе является полупроводником *p*-типа с энергией активации проводимости $E_a = 0.3 \, \text{eV}.$ В антиферромагнитной области наблюдается резкое изменение энергии активации: величина Е_a при T < 150 К практически равна нулю, а величина сопротивления ρ составляет $10^8 \Omega \cdot \text{сm}$ [3,4]. Оптические измерения были проведены на монокристалле *α*-MnS в плоскости (111) [2,5]. Были выявлены три пика поглощения, связанные с одноионными переходами в Mn^{2+} , и было показано, что с понижением температуры в α-MnS наблюдается синий сдвиг края поглощения.

В данной работе представлены результаты исследования спектров поглощения монокристалла α -MnS, полученного методом насыщения жидкого марганца серой.

Для оптических измерений были изготовлены две пластинки из монокристалла α -MnS (плоскости (111) и (100)), толщина пластинок с идеально отполированной поверхностью составляла $\sim 40 \,\mu$ m, площадь $\sim 2 \times 2$ mm. Измерения проводились в проточном кварцевом криостате в области температур 86–300 K с точностью ± 1 K, в интервале энергий $8 \cdot 10^3 - 22 \cdot 10^3$ cm⁻¹.

На рис. 1 изображены спектры оптического поглощения, снятые для плоскостей (111) и (100) монокристалла α -MnS при комнатной температуре. На рис. 2, *a* и *b* представлены спектры для этих плоскостей при трех температурах. Из рис. 2 видно существенное различие этих спектров. Для плоскости (111) (кривая *I* на рис. 1; рис. 2, *a*) спектры в основном идентичны спектрам оптического поглощения, полученным в работах [2,5]. Наблюдаются два максимума, которые относятся к электронным переходам иона Mn²⁺: *A*-пик (${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}({}^{4}G)$) и *B*-пик (${}^{6}A_{1g} \rightarrow {}^{4}T_{2g}(G)$). В работе [2] наблюдается еще третий максимум *C* (${}^{6}A_{1g} \rightarrow {}^{4}A_{1g}, {}^{4}E_{g}({}^{4}G)$); в нашем случае удалось записать лишь его длинноволновый край. Видимо, это связано с несколько большей толщиной образцов по сравнению с [2,5]. По этой же причине мы не смогли выявить край фундаментального поглощения.

Рис. 1. Оптическая плотность $D = \ln(I_0/I)$, где I_0 и I — падающий и прошедший световые потоки, для монокристалла α -MnS при T = 300 К. I,2 — световой луч нормален плоскости (111) и (100) соответственно.

Рис. 2. Спектры оптической плотности монокристалла α -MnS при температурах 300 (1), 160 (2) и 86 K (3). *а*, *b* — световой луч нормален плоскости (111) и (100) соответственно.

Характер спектра с понижением температуры не изменяется, энергия пика A ($E = 16667 \,\mathrm{cm}^{-1}$) практически не меняется, а энергия пика B ($E = 19608 \,\mathrm{cm}^{-1}$ при $T = 300 \,\mathrm{K}$) несколько возрастает. Интенсивность обоих пиков A и B уменьшается.

На рис. 1 (кривая 2) и рис. 2, b представлены спектры поглощения для плоскости (100). Ранее для этой плоскости оптические исследования не проводились. В области от $14 \cdot 10^3$ до $18 \cdot 10^3 \, \text{cm}^{-1}$ наблюдается широкая полоса, форма которой свидетельствует о расщеплении по крайней мере на две компоненты. Необходимо отметить, что незначительное расщепление просматривается на полосе А и в случае плоскости (111). При понижении температуры компоненты расщепления сближаются. При этом низкоэнергетическая компонента претерпевает существенно больший сдвиг к более высоким энергиям. Амплитуды и ширины обеих компонент уменьшаются. При минимальной использованной температуре полоса А для плоскости (100) остается заметно асимметричной, в то время как для плоскости (111) асимметрия этой полосы исчезает практически полностью. Положение полосы А для плоскости (100) при низких температурах соответствует положению полосы A в спектре для плоскости (111). На этом основании высокоэнергетическую компоненту полосы соотнесем с переходом ${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}({}^{4}G)$ в ионе Mn^{2+} . Низкоэнергетическая компонента, претерпевающая сдвиг к более высоким энергиям при понижении температуры, может быть связана как с расщеплением полосы ${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}({}^{4}G)$, так и с электронными возбуждениями другой природы.

Полоса в области $(18-20) \cdot 10^3$ сm⁻¹, соответствующая полосе В в спектре для плоскости (111), при комнатной температуре не проявляется полностью. (В этой области чувствительность фотоприемника уменьшается по сравнению с областью вблизи $16 \cdot 10^3 \, \mathrm{cm}^{-1}$, где расположена полоса А.) Полоса В наблюдается, начиная с $T \approx 160 \, \text{K}$. Интенсивность полос поглощения для плоскости (100) заметно больше, чем в случае (111). Поглощение в окне прозрачности вблизи $18 \cdot 10^3 \, {\rm cm}^{-1}$ для плоскости (100) существенно больше. Видимо, с этими двумя обстоятельствами связано различие цвета кристаллов, вырезанных из одного блока в разных плоскостях. Монокристалл *α*-MnS, вырезанный в плоскости (100), приобретает желтый цвет в отличие от зеленого, характерного для плоскости (100) α-MnS. Энергия пика В, который наблюдается для плоскости (100) только при низкой температуре, соответствует энергии пика В в спектре для плоскости (111).

Таким образом, обнаружена анизотропия оптического поглощения в монокристалле α -MnS в неполяризованном свете. Наиболее яркие ее проявления — разница в расщеплении низкоэнергетической полосы поглощения и в различие интенсивностей полос для двух плоскостей: (100) и (111).

Возможны различные объяснения обнаруженной анизотропии и расщепления низкоэнергетической полосы. Последнее может быть связано с динамическим эффектом Яна-Теллера [6-8]. С другой стороны, можно сделать предположение об образовании магнитного полярона за счет обменного взаимодействия носителей тока с элекронами d-оболочки иона Mn^{2+} (c-l-обмен) [9], подобно тому как это наблюдается в Cd_xMn_{1-x}Te [10,11]. При T = 0, согласно [9], спин-поляронное состояние совпадает с зонным, при конечных температурах они становятся существенно различными. С ростом температуры спин-поляронная зона смещается в сторону высоких энергий, при этом сдвиг в парамагнитном состоянии может составлять 60% от величины сдвига в магнитоупорядоченном состоянии и достигать зна-Для объяснения самой анизочений $\sim 0.1 \, \text{eV}$ [9]. тропии необходимо учесть особенности зонной структуры кристалла и ее изменения при фазовых переходах. Для получения четкой интерпретации обнаруженных аномалий поглощения проводятся дополнительные измерения.

Список литературы

- Г.А. Петраковский, Л.И. Рябинкина, Г.М. Абрамова, Н.И. Киселев, Д.А. Великанов, А.Ф. Бовина. Письма в ЖЭТФ 69, 12, 949 (1999).
- [2] А.В. Малаховский, Т.П. Морозова, В.Н. Заблуда, Л.И. Рябинкина. ФТТ 32, 4, 1012 (1990).
- [3] L.I. Ryabinkina, G.V. Loseva. Phys. Stat. Sol. (a) 80, k179 (1983).
- [4] H.H. Heikens, C.F. van Bruggen, C.J. Haas. J. Phys. Chem. Sol. 39, 8, 833 (1978).
- [5] D.R. Huffman, R.L. Wild. Phys. Rev. 156, 3, 989 (1967).
- [6] И.Б. Берсукер. Электронное строение и свойства координационных соединений. Химия, Л. (1976). 348 с.
- [7] M.D. Sturge. Sol. State Phys. 20, 92 (1967).
- [8] T.E. Freeman, G.D. Jones. Phys. Rev. 182, 2, 411 (1969).
- [9] Э.Л. Нагаев. Физика магнитных полупроводников. Наука, М. (1979). 431 с.
- [10] И.А. Меркулов. ФТТ **42**, *1*, 126 (2000).
- [11] D.R. Yakovlev, K.V. Kavokin. Comments Cond. Matter. Phys. 18, 2, 51 (1996).