Электронная структура Yb, Ag и Cu в тяжелофермионной системе YbCu_{5-x}Ag_x

© В.А. Шабуров, А.Е. Совестнов, Ю.П. Смирнов, А.В. Тюнис, А.В. Голубков*

Петербургский институт ядерной физики им. Б.П. Константинова Российской академии наук, 188350 Гатчина, Ленинградская обл., Россия *Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: asovest@mail.pnpi.spb.ru

(Поступила в Редакцию 19 декабря 2000 г. В окончательной редакции 18 января 2001 г.)

Методом смещений рентгеновских линий исследована электронная структура — заселенности состояний (4f - Yb, 5s - Ag и 4s - Cu) в системе с тяжелыми фермионами YbCu_{5-x}Ag_x $(0 \le x \le 1, T = 300 \text{ K};$ для Yb T = 77, 300, 1000 K). Показано, что в кубической фазе (тип AuBe₅) Yb находится в состоянии нецелочисленной валентности, величина которой не зависит от состава и равна $ar{m}_{
m cub}=2.91\pm0.01.$ В двухфазной области x < 0.125 (смесь кубической (AuBe₅) и гексагональной (CaCu₅) фаз) m уменьшается с уменьшением х. Из экспериментальных величин т в кубической и смешанной фазах, а также концентраций кубической и гексагональной фаз в двухфазной области определена валентность Yb в гексагональной фазе $ar{m}_{
m hex}=2.71\pm0.04$. При повышении температуры в области $T=77-1000\,{
m K}$ наблюдается линейное уменьшение т для образцов из области кубической фазы и линейное увеличение т для двухфазной области. При T = 1000 К валентности Yb в кубической и смешанной фазах практически совпадают: $m_{cub} = 2.83 \pm 0.02$, $m_{
m mix} = 2.78 \pm 0.02$. Для кубической фазы обнаружено не зависящее от состава увеличение заселенности 5s-состояний Ag (по сравнению с металлом) $\overline{\Delta n_{5s}}$ (Ag) $= 0.69 \pm 0.07$ el./at. и одновременное линейное увеличение Δn_{4x} (Cu) от ≈ 0.1 el/at. для x = 1 до ≈ 0.3 el/at. для x = 0.2. Различие в поведении эффектов Δn_s для Си и Ад объяснено особенностью кристаллической структуры YbCu_{5-x}Ag_x. Из анализа микрои макроскопических свойств следует, что YbCu5-xAgx является системой с промежуточной валентностью (ПВ), и соответственно "утяжеление" электронов в ней связано с выходом 4*f*-электрона на уровень Ферми (делокализация). Эффект увеличения заселенности s-состояний партнеров Yb объяснен тем, что при переходе в состояние ПВ 4f-электрон Yb гибридизируется с s-электронами соседних атомов Ag и Cu, но не с электронами Yb.

Работа поддержана Российским фондом фундаментальных исследований (проект № 99-02-16633). Один из авторов (А.В. Г.) проводил синтез исследованных образцов при финансовой поддержке РФФИ (проект № 99-02-18078).

Заселенность 4f-оболочки редкоземельного атома в системах с тяжелыми фермионами (ТФ) является одной из фундаментальных характеристик этого состояния, когда речь идет о его формировании. Механизм появления на уровне Ферми зоны "тяжелых" электронов до конца не ясен. Не ясно, связано ли это с выходом f-уровня на уровень Ферми (в этом смысле *f*-электроны становятся делокализованными, и ширина зоны определяется непосредственно *f*-*sd*-гибридизацией [1]) или с коллективными процессами, когда f-уровень лежит еще относительно глубоко и свойства электронов вблизи уровня Ферми могут определяться коллективными эффектами типа эффекта Кондо, т.е. резонансного рассеяния электронов проводимости на локализованных магнитных моментах *f*-центров [2]. В определенной степени вопрос о том, в каком состоянии (локализованном или делокализованном) находится *f*-электрон, может быть прояснен при определении электронной структуры (заселенности f-оболочки) Yb. В первом случае число f-электронов должно быть целым, во втором — дробным.

Среди систем с ТФ на основе редкоземельных элементов наиболее распространенными являются системы с церием и иттербием. Ранее методом смещений рентгеновских линий (см., например, [3,4]) мы исследовали электронную структуру Се в "классических" тяжелофермионных системах CeAl₃, CeCu₂Si₂, CeCu₆, а также в CeCu₄Al, имеющем рекордное значение коэффициента электронной теплоемкости $\gamma = 2800 \text{ mJ/mol} \cdot \text{K}^2$ [5]. Было показано, что во всех исследованных соединениях валентность Се имеет практически целочисленное значение $\bar{m}_{Ce} = 3.011 \pm 0.002$. С другой стороны, по данным L_{III}-спектроскопии [6] для ряда интерметаллических соединений Yb, которые позднее были идентифицированы как системы с ТФ (YbCu₂Si₂, YbPd₂Si₂, YbCuAl и др.), наблюдаются нецелочисленные величины $m \approx 2.8-2.9$. Нецелочисленная величина mнаблюдалась и нами в YbIn_{1-x}Ag_xCu₄ [7]. Из анализа макро- и микроскопических свойств следовало, что YbIn_{1-x}Ag_xCu₄ является системой с промежуточной (флуктуирующей) валентностью ($\bar{m} = 2.91 \pm 0.01$), и утяжеление" электронов было объяснено гибридизацией 4f-электронов Yb с s-электронами партнеров — в основном In и Ag и в меньшей степени Cu. Наблюдаемое различие валентных свойств Ce и Yb является, по-видимому, отражением двойственной природы 4*f*-электрона (локализованный–делокализованный) в тяжелофермионных системах.

В данной работе методом смещений рентгеновских линий исследована электронная структура, т.е. заселенность 4f-состояний Yb, 5s-состояний Ag и 4s-состояний Си в YbCu_{5-x}Ag_x (0 $\leq x \leq 1$, T = 300 K; для Yb T = 77, 300, 1000 K). Эта система генетически связана с ранее исследованной нами "родственной" системой YbIn_{1-x}Ag_xCu₄: она имеет такую же кристаллическую структуру (AuBe₅) в широком диапазоне составов (x = 0.125 - 1), умеренно большое значение коэффициента электронной теплоемкости $\gamma = 210 \,\mathrm{mJ/mol} \cdot \mathrm{K}^2$ для YbAgCu₄ и $\gamma = 460 \text{ mJ/mol} \cdot \text{K}^2$ для YbCu_{4.875}Ag_{0.125} и принадлежит к классу систем с ТФ на основе иттербия. Макроскопические свойства YbCu5-xAgx (кристаллическая структура, магнитная восприимчивость, электросопротивление, удельная теплоемкость и др.) исследованы достаточно подробно [8]. В то же время нет прямых микроскопических данных по электронной структуре как Yb, так и его окружения, важных для определения механизма формирования ТФ-состояния. Наряду со сходством наблюдается достаточно интересное различие в структурных свойствах YbIn_{1-x}Ag_xCu₄ и YbCu_{5-x}Ag_x: в первой системе кубическая кристаллическая структура (типа AuBe₅) существует во всей области x = 0-1, тогда как во второй системе она сохраняется только до $x_0 = 0.125$. В области $x \leq 0.125$ в системе появляется примесь гексагональной фазы (структура CaCu₅), которая сосуществует вместе с кубической вплоть до x = 0 (YbCu₅). Считается, согласно магнитным данным [8,9], что в гексагональной фазе Yb двухвалентен, а в кубической — трехвалентен, поэтому представляет интерес исследовать электронную природу структурного $(AuBe_5 \rightarrow CaCu_5)$ перехода прямым микроскопическим методом.

Экспериментальные результаты. Обсуждение

Исследованные поликристаллические образцы YbCu_{5-x}Ag_x синтезировались из стехиометрических смесей чистых металлов (Yb двойной дистилляции, Ад и Си особой чистоты). Плавка проводилась в индукционной печи в танталовых тиглях в вакууме с последующим отжигом при температуре $T = 700^{\circ}$ С. Полученные образцы из области x = 0.2-1 были монофазны и имели кубическую (тип AuBe₅, C15b) кристаллическую структуру. Концентрационная зависимость параметра решетки a(x) при комнатной температуре хорошо совпадает с данными работы [8] (рис. 1). Состав (х) контролировался флуоресцентным анализом. В образцах из области x < 0.2 наблюдалась смесь кубической (AuBe₅) и гексагональной (CaCu₅) фаз, концентрации которых, определенные с помощью стандартной программы FULL PROF, оказались

Рис. 1. Зависимость параметра решетки YbCu_{5-x}Ag_x в кубической (AuBe₅) фазе от состава. I — наши данные, 2 — данные [8].

равными $C_{\rm cub} = 27 \pm 4\%$, $C_{\rm hex} = 73 \pm 4\%$ для x = 0 и $C_{\rm cub} = 33 \pm 4\%$, $C_{\rm hex} = 67 \pm 4\%$ для x = 0.05. Параметры решетки гексагональной фазы практически одинаковы для обоих исследованных образцов (ч = 0 и 0.05), средневзвешенные значения $\bar{a} = 4.995$ Å, c = 4.124 Å хорошо согласуются с величинами, приведенными в работах [8,10].

Смещения $K_{\alpha 1}$ -линий Yb, Ag и Cu измерялись на специальном рентгеновском кристалл-дифракционном спектрометре по Koшya. Флуоресцентное излучение в образце возбуждалось рентгеновской трубкой промышленного аппарата РАП-150/300 (I = 10 mA, U = 150 kV). Образцы в опытах при комнатной температуре представляли собой прессованные таблетки из смеси мелкодисперсного порошка исследуемого вещества и наполнителя — полиэтилена. В опытах при T = 77 K использовались низкотемпературных измерениях применялись вакуумные камеры из кварца с тонкими плоскопараллельными шлифованными окнами и внешним нагревателем. Схема опыта и процедура измерений подробно описаны в предыдущих работах (см., например, [3,11]).

1) Иттербий. Как известно, валентность атомов редкоземельных элементов однозначно связана с заселенностью 4f-оболочки: $m = Z_{\text{Ln}} - Z_{\text{Xe}} - n_{4f}$, где Z_{Ln} и Z_{Xe} — порядковые номера лантаноида и ксенона в периодической системе, а *n*_{4f} — заселенность 4*f*-оболочки. Изменение *n*_{4f} приводит к аномально большим (по сравнению с эффектами от 6s(p)-, 5*d*-электронов) изменениям энергии (смещениям) эмиссионных К-линий исследуемого редкоземельного элемента $(|\Delta E_{K_{\alpha_1,2}}^{4f}| \approx 500-600 \text{ meV}, |\Delta E_{K_{\alpha_1,3}}^{4f}| \approx 1500-1700 \text{ meV},$ $|\Delta E_{K_{\alpha\beta}}^{6s(p),5d}| \approx 20 - 80 \text{ meV})$ [4]. Это делает метод смещений рентгеновских линий достаточно чувствительным при исследовании процессов, связанных с перестройкой 4*f*-оболочки (изменением валентности).

Экспериментальные смещения (ΔE) $K_{\alpha 1}$ -линий Yb, Ag и Cu в YbCu_{5-x}Ag_x (реперы — Yb, Ag и Cu — металлы, T — температура образца при которой проводились измерения)

x	<i>Т</i> ,К	ΔE (Yb), meV	ΔE (Ag), meV	ΔE (Cu), meV
0	77 300 1000	$-387 \pm 17 \\ -428 \pm 5 \\ -454 \pm 14$		-19 ± 6
0.05	300	-471 ± 6	_	_
0.2	300	-550 ± 6	-43 ± 7	-31 ± 6
0.4 0.6 0.8 1.0	77 300 1000 300 300 77 300 1000	$-524 \pm 18 \\ -520 \pm 6 \\ -468 \pm 18 \\ -542 \pm 6 \\ -526 \pm 6 \\ -543 \pm 23 \\ -528 \pm 6 \\ -495 \pm 12 \\ -495 \pm 12 \\ -524 \pm 12 \\ -495 \pm 12 \\ -528 \pm 6 \\$	-35 ± 6 -53 ± 7 -38 ± 7 -39 ± 7 $-$	-18 ± 6 -21 ± 6 -22 ± 6 -8 ± 2
Yb ₂ O ₃ AgCl CuCl		-583 ± 5	- 122 ± 5 -	$\stackrel{-}{\stackrel{-}{_{-}}}$ 164 ± 5

Примечание. Внизу таблицы приведены экспериментальные смещения $K_{\alpha 1}$ -линий для ионных соединений.

Экспериментальные величины смещений $K_{\alpha 1}$ -линии Yb в YbCu_{5-x}Ag_x относительно двухвалентного репера — металлического Yb — приведены в таблице. Знак и аномально большие величины эффектов однозначно свидетельствуют об уменьшении числа 4f-электронов (увеличении валентности) Yb. Разность числа 4f-электронов Yb в соединении и репере определялась как $\Delta n_{4f}(x, T)$ $= \Delta E(x,T)/\Delta E(Yb^{3+}-Yb^{2+})$, где $\Delta E(x,T)$ — экспериментальное смещение, $\Delta E(Yb^{3+} - Yb^{2+})$ — калибровочное смещение, соответствующее смещению К_{а1}-линии Yb при уменьшении заселенности 4f-оболочки на единицу. Очевидно, что валентность Yb в исследуемом образце $m = m_{\text{rep}} + \Delta n_{4f} = 2 + \Delta n_{4f}$. Калибровочное смещение измерено для пары Yb2O3-Ybmet и равно $\Delta E(Yb^{3+} - Yb^{2+}) = -583 \pm 5$ meV. Зависимость валентности Yb от состава при комнатной температуре приведена на рис. 2. В области кубической фазы (x = 0.2-1) валентность Yb практически постоянна и имеет нецелочисленное значение $\bar{m}_{\rm cub} = 2.91 \pm 0.01$, совпадающее с валентностью Yb в YbIn_{1-x}Ag_xCu₄ $\bar{m} = 2.91 \pm 0.01$ [7]. В области x < 0.2, в которой наблюдается сосуществование кубической и гексагональной фаз, валентность Yb уменьшается. Из экспериментальных величин *m* для кубической фазы (x > 0.2) и смеси фаз (x = 0 и 0.05), а также концентраций гексагональной и кубической фаз определена валентность Yb в гексагональной фазе $\bar{m}_{\rm hex} = 2.71 \pm 0.04$. Отметим, что линейная экстраполяция m(x) для составов из двухфазной области x < 0.2пересекается с прямой $\bar{m}_{\rm cub}$ в точке $x = 0.12 \pm 0.02$, которая хорошо совпадает с величиной $x_0 = 0.125$, полученной в макроскопических экспериментах [8] для границы перехода от монофазной к двухфазной области.

Нецелочисленность валентности f-атома характерна для специфического класса редкоземельных и актинидных соединений с промежуточной (флуктуирующей) валентностью (ПВ). Нецелочисленная величина m = 2.91в YbCu_{5-x}Ag_x мало отличается от "нормального" для Yb значения 3. Однако такое небольшое отличие приводит к принципиально разным выводам при выборе механизма состояния ТФ (f-sd-гибридизация либо коллективные процессы типа эффекта Кондо). Количественно ожидаемая валентность Yb в состоянии ПВ оценена из феноменологической модели межконфигурационных флуктуаций [12,13], в которой состояние ПВ рассматривается как резонанс (флуктуации) между энергетически близкими начальным $4f^n$ и конечным $4f^{n-1} + e$ состояниями 4*f*-электрона. Вероятность нахождения *f*-атома в состоянии f^{n-1} определяется распределением типа Больцмана

$$P(f^{n-1}) = \left[1 + \frac{M_n}{M_{n-1}} \exp \frac{E_{\text{ex}}}{T + \Gamma}\right]^{-1}, \qquad (1)$$

где $E_{ex} = E_{n-1} - E_n$ — разность энергий конфигураций $4f^n$ и $4f^{n-1}$, M_n и M_{n-1} — статвеса этих состояний, Γ — энергия андерсоновской гибридизации 4f-электрона с электроном зоны проводимости (ширина 4f-уровня). Состояние ПВ реализуется в том случае, когда $|E_{ex}| \leq \Gamma$. В предположении, что флуктуации 4f-электрона Yb в YbCu_{5-x}Ag_x с узла на узел происходят только между совпадающими (вырожденными) энергетическими уровнями ($E_{ex} \approx 0$) — переход типа перехода Андерсона [14], вероятность состояния Yb³⁺ определяется только статвесами Yb²⁺ (J = 0, $M_n = 1$) и Yb³⁺ (J = 7/2, $M_{n-1} = 8$) и равна $P(Yb^{3+}) = M_{n-1}/(M_{n-1}+M_n) = 8/9$, что соответствует величине m = 2.89, хорошо совпада

Рис. 2. Зависимость валентности Yb в YbCu_{5-x}Ag_x (1) и YbIn_{1-x}Ag_xCu₄ (2) [7] от состава при комнатной температуре (здесь и далее ошибки статистические). x_0 — граница перехода от монофазной области к двухфазной в YbCu_{5-x}Ag_x.

Рис. 3. Температурные зависимости валентности Yb в YbCu_{5-x}Ag_x для монофазных (YbCu_{4.6}Ag_{0.4} и YbCu₄Ag) и двухфазного (YbCu₅) образцов, а также для YbIn_{0.7}Ag_{0.3}Cu₄ из работы [7].

ющей (для такой достаточно простой модели) с нашим экспериментальным значением 2.91 ± 0.01 .

Отождествление состояния ПВ только по признаку m целое-нецелое недостаточно. Нецелочисленность валентности имеет место и в соединениях со смешанной валентностью, когда ионы разной валентности занимают неэквивалетнтные положения в кристаллической решет-ке (пример — Eu₃O₄).

В качестве косвенного подтверждения состояния ПВ в кубической фазе YbCu5-xAgx можно рассматривать эксперимент при высокой температуре. На рис. 3 приведены температурные зависимости валентности Ув в УbCu_{5-x}Ag_x для образцов с x = 0.4 и 1. Наблюдается уменьшение m с увеличением температуры; ход m(T)в YbCu_{5-x}Ag_x практически такой же, как в ранее исследованной нами системе YbIn_{1-x}Ag_xCu₄. Уменьшение *т* с увеличением температуры в YbIn_{1-x}Ag_xCu₄ было объяснено в предположении зависимости Eex от T (теория в принципе допускает такую возможность [15]). Ранее эффект уменьшения валентности редкоземельных атомов при высокой температуре в "классических" системах с ПВ мы наблюдали для широкого класса интерметаллических соединений церия [16,17] и европия [18] методом смещений рентгеновских линий, а авторы работ [19,20] — в соединениях Еи методом мессбауэровской спектроскопии. Температурные зависимости m(T) для совпадающих объектов (EuCu₂Si₂, EuRh₂, Eu(Ni_{1-x}Cu_x)₅) демонстрируют хорошее согласие обоих методов.

Таким образом, совокупность рассмотренных выше микро- и макроскопических свойств $YbCu_{5-x}Ag_x$ в кубической фазе (x = 0.2-1), а также эквивалентность положения атомов в кристаллической решетке позволяют рассматривать эту систему как систему с промежуточной

(флуктуирующей) валентностью и соответственно "утяжеление" электронов в ней — как результат f-sd-гибридизации при переходе 4f-электрона в состояние ПВ.

Различие в поведении температурной зависимости валентности Yb для кубической и смешанной фаз (рис. 3) можно объяснить двумя вероятными механизмами: 1) из формулы (1) следует, что вероятность нахождения Yb в трехвалентном состоянии P(3+) может возрастать либо уменьшаться с ростом температуры в зависимости от знака E_{ex} ; 2) при увеличении температуры происходит плавный структурный фазовый переход из гексагональной фазы в кубическую, и при $T = 1000 \, \mathrm{K}$ система YbCu5-xAgx становится монофазной во всей области x = 0-1. При T = 1000 К валентность Yb в кубической фазе YbCu5-xAgx практически совпадает с его валентностью в смешанной фазе: $m_{\rm cub} = 2.83 \pm 0.02$, $m_{\rm mix} = 2.78 \pm 0.02$. Выбор одного из двух приведенных выше вариантов может быть сделан при фазовом анализе $YbCu_{5-x}Ag_x$ в области высоких температур.

2) Серебро, медь. Одним из ключевых (и практически неисследованных) вопросов в проблеме ПВ (и соответственно ТФ) является вопрос о том, на каких центрах происходит f-sd-гибридизация. В работе [7] мы предположили, что при переходе в состояние ПВ 4f-электрон гибридизируется в основном с 5s-электронами In и Ag и в меньшей степени с 4s-электронами Cu.

Вопрос о том, на каких центрах происходит f-sd-гибридизация, изучен и в данной работе. Для этого определены заселенности внешних s-состояний Ag и Cu по смещениям их К₀₁-линий. Смещения К₀₁-линий Ад и Си приведены в таблице. Для всех исследованных составов YbCu_{5-x}Ag_x наблюдаются отрицательные смещения относительно соответствующих металлов. Как показано нами ранее [21], удаление из атома валентных s(p)-электронов в тяжелых элементах приводит к положительным смещениям K_{\alpha1}-линий (количественно эффекты от s- и р-электронов практически равны). Масштаб эффектов $\Delta E_{K_{\alpha 1}} = E_{\text{ion}} - E_{\text{met}}$ для ионных соединений Yb, Ag и Cu иллюстрируется в таблице. Ненулевые отрицательные величины смещений K_{a1}-линий Ag и Cu в YbCu_{5-x}Ag_x означают, что заселенности внешних s(p)-состояний Ag и Си увеличиваются при переходе от металлического состояния в состояние ПВ.

Заселенности 5*s*-состояний Ag и 4*s*-состояний Cu определялись из экспериментальных смещений $K_{\alpha 1}$ -линий и атомарных расчетов типа Дирака–Фока. Для каждого образца YbCu_{5-x}Ag_x находилась величина Δn_s из уравнения

$$\Delta E_{\text{calc}}(\Delta n_s) = \Delta E^M(x), \qquad (2)$$

где M = Ag или Cu, $\Delta E_{calc}(\Delta n_s)$ — расчетные смещения, $\Delta E^M(x)$ — экспериментальные смещения, Δn_s — разность числа 5(4)*s*-электронов Ag(Cu) в YbCu_{5-x}Ag_x и металлическом репере (электронные конфигурации $4d^{10}5s^1$ и $3d^{10}4s^1$ для Ag и Cu соответственно). Результаты представлены на рис. 4, из которого следует, что ве-

Рис. 4. Изменение заселенности 5*s*-состояний Ag и 4*s*-состояний Cu в YbCu_{5-*x*}Ag_{*x*} в зависимости от состава при комнатной температуре, а также значения Δn_s для YbIn_{1-*x*}Ag_{*x*}Cu₄ из работы [7].

личины $\Delta n(x)$ для Ag практически не зависят от состава и их средневзвешенное значение $\overline{\Delta n}_{5s} = 0.69 \pm 0.07$ el/at. хорошо совпадает с $\overline{\Delta n}_{5s} = 0.71 \pm 0.09$ el/at. для YbIn_{1-x}Ag_xCu₄.

Увеличение заселенности 5*s*-состояний Ag и 4*s* Cu в YbCu_{5-*x*}Ag_{*x*} можно объяснить (так же как это было сделано нами для YbIn_{1-*x*}Ag_{*x*}Cu₄ в работе [7]) гибридизацией 4*f*-электрона Yb с электронами проводимости соседних атомов Ag и Cu. Вариант, когда 4*f*-электрон флуктуирует между состоянием соседних атомов иттербия, в принципе не должен приводить к изменению электронной структуры серебра и меди. В YbIn_{1-*x*}Ag_{*x*}Cu₄ суммарное увеличение заселенности $\overline{\Delta n_{\Sigma}}$ (Ag, In, Cu) = 1.0 ± 0.1 el/at. практически совпадает с уменьшением заселенности 4*f*-оболочки Yb в состоянии ПВ $\overline{\Delta n_{4f}} = 0.91 \pm 0.01$ el/at.; баланс $\Delta n_f \approx \Delta n_{\Sigma} \approx 1$ не зависит от состава и обеспечивается в основном Ag и In и в меньшей степени четырьмя атомами меди.¹

Иная ситуация наблюдается в YbCu_{5-x}Ag_x. Здесь увеличение заселенности 5*s*-состояний Ag совпадает с Δn_{5s} (Ag) в YbIn_{1-x}Ag_xCu₄ и тоже не зависит от состава (рис. 4), однако общее число атомов серебра уменьшается при замещении медью и соответственно $x\Delta n_s$ (Ag) уменьшается от ≈ 0.7 el./at. при x = 1 до ≈ 0.14 el./at. при x = 0.2. Не зависит от состава и валентность Yb ($\Delta n_{4f} = 0.91$ el./at.), хотя она должна уменьшаться, если гибридизация 4f-электрона происходит в основном на атомах Ag (как в YbIn_{1-x}Ag_xCu₄). Мы предполагаем, что в YbCu_{5-x}Ag_x с уменьшением концентрации Ag существенную роль в механизме f-*s*-гибридизации начинают играть атомы меди, обеспечивающие постоянство

валентности Yb с уменьшением *х*. Из рис. 3 видно, что с уменьшением концентрации серебра заселенность 4*s*-состояний меди растет и при $x = 0.2 \Delta n_{4s}$ (Cu) примерно в 3 раза больше, чем в YbIn_{1-x}Ag_xCu₄.

Различие в поведении эффектов Δn_{4s} для Си в YbIn_{1-x}Ag_xCu₄ и YbCu_{5-x}Ag_x можно объяснить особенностями кристаллических структур этих соединений. Элементарная ячейка Yb(In, Ag)Cu₄ состоит из двух подрешеток: подрешетки (Yb, In, Ag), как в фазах Лавеса (тип MgCu₂) для редкоземельных элементов, и подрешетки Cu, образованной тетраэдрами из четырех атомов меди [22]. Предполагается, что атомы первой подрешетки сильно связаны между собой и слабо связаны с атомами второй подрешетки [23], поэтому в процессе гибридизации обмен электронами определяется в основном атомами первой подрешетки (Yb, Ag, In).

Элементарная ячейка YbCu5-xAgx в кубической фазе состоит, так же как в Yb(In, Ag)Cu₄, из двух подрешеток: подрешетки редкоземельного элемента (как в фазах Лавеса типа MgCu₂) и медной подрешетки — с тем лишь отличием, что в первой подрешетке присутствует "пятый" атом меди (Cu*), который, подобно In в Yb(In, Ag)Cu₄, компенсирует убыль Ag и обеспечивает независимость Δn_{4f} от состава при f-s-гибридизации. Изменение суммарной заселенности $\Delta n_{\Sigma}(Ag, Cu, Cu^*)$ увеличивается от 1.2 ± 0.2 el./at. для x = 1 до 1.6 ± 0.2 el./at. для x = 0.2. Превышение $\Delta n_{\Sigma} > \Delta n_{4f}$ может быть вызвано дополнительным перетеканием внешних валентных 6s-, 5d-электронов Yb на атомы Cu* в первой подрешетке. Такой эффект мы наблюдали в фазах Лавеса CeRu₂, CeRh₂ и CeOs₂ [17].

Увеличение коэффициента электронной теплоемкости γ в YbCu_{5-x}Ag_x при уменьшении x в работе [8] объясняется увеличением "химического" сжатия, возникающего в кристаллической решетке при замещении атомов Ад меньшими по размеру атоамами Cu.² При описании механизма *f*-*sd*-гибридизации в системах ПВ и ТФ принято считать (см., например, [25]), что наряду с размерным фактором ("химическое" сжатие в данном случае) важную роль играет и электронная структура компонент соединения (электронный фактор). Из наших данных следует, что суммарное изменение заселенности 5s(4s)-состояний Δn_{Σ} растет с увеличением концентрации Cu от ≈ 1.2 el./at. для x = 1 до ≈ 1.6 el./at. для x = 0.2 и коррелирует с увеличением коэффициента электронной теплоемкости от ≈ 250 до \approx 460 mJ/mol · K² [8]. Анализ величин Δn_s (Ag, Cu) позволяет выявить те атомы, которые приводят к увеличению Δn_{Σ} и соответственно возрастанию γ . Как показано выше, рост Δn_{Σ} с увеличением концентрации меди определяется "пятым" атомом меди (Cu*).

¹ В Yb(In, Ag)Cu₄ $\overline{\Delta n}_s(\text{Ag}) \approx \overline{\Delta n}_s(\text{In}) \approx 0.7 \text{ el./at.}$ не зависит от x [7], число атомов Cu постоянно, поэтому всегда будет выполняться соотношение $\Delta n_{4f} \approx \Delta n_{\Sigma} \approx 1 \text{ el./at.}$

² Хотя металлические радиусы атомов Ag и Cu отличаются значительно ($\approx 12\%$) [24], изменение параметра решетки YbCu_{5-x}Ag_x составляет всего лишь $\approx 1\%$ (рис. 1). Слабая чувствительность параметра решетки к размерам Ag и Cu объясняется тем, что он определяется в основном размерами атомов второй подрешетки, а замещение атомов Ag атомами Cu происходит в первой [24].

В заключение авторы благодарят Е.Г. Андреева за помощь в проведении эксперимента и П.Л. Соколову за оформление статьи.

Список литературы

- [1] O.W. Overhauser. J. Appel. Phys. Rev. B31, 1, 193 (1985).
- [2] A.M. Tsvelick, P.W. Wiegmann. Adv. Phys. 32, 4, 453 (1983).
- [3] O.I. Sumbaev. In: Modern Physics in Chemistry. Academic Press, N. Y. (1977). V. 1. P. 33.
- [4] О.И. Сумбаев. УФН 124, 2, 281 (1978).
- [5] В.А. Шабуров, Ю.П. Смирнов, А.Е. Совестнов, А.В. Тюнис, П.А. Алексеев, В.Н. Лазуков. ФТТ 38, 3, 954 (1996).
- [6] J. Röhler. In: Handbook Phys. and Chem. of Rare Earth. (1987). V. 10. P. 453.
- [7] В.А. Шабуров, А.Е. Совестнов, Ю.П. Смирнов, А.В. Тюнис, А.В. Голубков. ФТТ 42, 7, 1164 (2000).
- [8] N. Tsujii, J. He, K. Yoshimura, K. Kosuge, H. Michor, K. Kreiner, G. Hilscher. Phys. Rev. B55, 2, 1032 (1997).
- [9] A. Iandelli, A. Palenzona, J. Less-Comm. Met. 25, 333 (1971).
- [10] Е.И. Гладышевский, О.И. Бодак. Кристаллохимия интерметаллических соединений редкоземельных металлов. Вища шк., Львов (1982). 251 с.
- [11] Ю.П. Смирнов, А.Е. Совестнов, Г.И. Терехов, А.В. Тюнис, В.А. Шабуров. ЖЭТФ 93, 2(8), 692 (1987).
- [12] B.C. Sales, D.K. Wohlleben. Phys. Rev. Lett. 35, 18, 1240 (1975).
- [13] L.L. Hirst. Phys. Rev. B15, 1, 1 (1977).
- [14] P.W. Anderson. Phys. Rev. 109, 5, 1492 (1958).
- [15] D.K. Wohlleben. J. de Phys. 37, C4-321 (1976).
- [16] В.А. Шабуров, Ю.П. Смирнов, А.Е. Совестнов, А.В. Тюнис. Письма в ЖЭТФ 41, 5, 213 (1985).
- [17] Ю.П. Смирнов, А.Е. Совестнов, А.В. Тюнис, В.А. Шабуров. ФТТ 40, 8, 1397 (1998).
- [18] М.Н. Грошев, В.И. Петрова, Ю.П. Смирнов, А.Е. Совестнов, А.В. Тюнис, В.А. Шабуров, И.А. Сергеева. ФТТ 29, 4, 1035 (1987).
- [19] F. Scherzberg, Ch. Sauer, U. Köbler, W. Zinn. Solid State Commun. 49, 11, 1027 (1984).
- [20] E.R. Bauminger, D. Froindlich, I. Nowik, S. Ofer. Phys. Rev. Lett. 30, 21, 1053 (1973).
- [21] Е.В. Перович, Ю.П. Смирнов, А.И. Грушко, О.И. Сумбаев, И.М. Банд, М.Б. Тржасковская. ЖЭТФ 61, 5(11), 1756 (1971).
- [22] М.Ю. Теслюк. Металлические соединения со структурами фаз Лавеса. Наука, М. (1969). С. 13.
- [23] Х.Р. Кирхмайер, К.А. Полди. В справочнике: Физика и химия редкоземельных элементов / Под ред. К. Гшнайдера и Л. Айринга. Металлургия, М. (1982). С. 88.
- [24] У. Пирсон. Кристаллохимия и физика металлов и сплавов. Мир, М. (1977). 419 с.
- [25] Д.И. Хомский. Необычные электроны в кристаллах (промежуточная валентность и тяжелые фермионы). Знание, М. (1987). 63 с.