Термоэдс и электросопротивление La_{0.875}Sr_{0.125}MnO₃ под гидростатическим давлением

© Е.С. Ицкевич, В.Ф. Крайденов

Институт физики высоких давлений им. Л.Ф. Верещагина Российской академии наук, 142190 Троицк, Московская обл., Россия

(Поступила в Редакцию 28 июля 2000 г. В окончательной редакции 13 ноября 2000 г.)

Проведены измерения термоэдс α и электросопротивления ρ La_{1-x}Sr_xMnO₃ с концентрацией x = 0.125, отвечающей стехиометрическому составу новой зарядоупорядоченной фазы (*CO*). Измерения проводились на монокристаллах в интервале температур 77–300 К и под давлением до 12 kbar. В зависимости $\alpha(T)$ наблюдались два максимума. Первый, низкотемпературный, связан с образованием зарядоупорядоченной фазы. Второй, высокотемпературный, обусловлен структурным переходом между орторомбическими фазами $O \rightarrow O'$ и образованием ферромагнитных кластеров. При давлении P > 9.2 kbar наблюдался фазовый переход, сопровождаемый сильным сдвигом обоих максимумов в сторону низких температур.

Работа поддержана грантом Российского фонда фундаментальных исследований № 00-02-16019, программой РФ ВТСП и грантом INTAS 99-1136.

Изучение свойств перовскитных структур ВТСП и манганатов породило множество физических теорий, каждая из которых опирается на группу экспериментальных фактов. Исследования температурной зависимости термоэдс и электросопротивления оказались достаточно информативными для того, чтобы улучшить понимание физических процессов как в нормальном состоянии ВТСП, так и в манганатах с колоссальным магнитосопротивлением. Использование давления при таких исследованиях существенно повышает ценность полученных результатов [1,2] и, в частности, позволяет провести сравнительный анализ поведения этих двух систем.

Одной из наиболее интересных систем является $La_{1-x}Sr_xMnO_3$. В этой системе при x = 0.10-0.15 с помощью нейтронографических данных [3] при температуре в области 100-200 К наблюдалось образование новой зарядоупорядоченной (СО) фазы. С уменьшением х в указанном диапазоне переход второго рода превращается в переход первого рода. Весьма вероятно, что смена вида перехода происходит в точке x = 0.125 (1/8), которая отвечает стехиометрическому составу новой СО-фазы. В работе [4] описаны измерения термоэдс α и электросопротивления ρ под давлением до 18 kbar в образцах с x = 0.12, 0.14 и 0.15. О том, что при промежуточных значениях х происходит сильная электронная перестройка, свидетельствует шестикратная разница в величинах термоэдс в области низкотемпературного максимума, находящегося в области образования СО-фазы. Поэтому мы предприняли измерения термоэдс в образцах $La_{0.875}Sr_{0.125}MnO_3$ с x = 0.125, в том числе под давлением, с целью получить дополнительные сведения об образовании этой упорядоченной фазы.

1. Образцы, методика измерений под давлением

Технология изготовления монокристаллических образцов, проверка величины х и монокристалличности описаны в работе [5]. Образец представлял собой пластинку в форме трапеции высотой 2.5 mm, толщиной 1.3 mm и с основаниями длиной 1.5 и 2.0 mm. Исходная величина удельного электросопротивления при атмосферном давлении составляла $\rho(300) = 12 \,\Omega \cdot \mathrm{cm}$. Нагреватель с термопарой приклеивались к верхней плоскости образца с помощью серебряной пасты с последующей сушкой при 60°С в течение нескольких часов. Эта паста использовалась для крепления образца к медной шайбе на обтюраторе камеры высокого давления и присоединения потенциальных выводов для измерения ρ образца с расстоянием между вводами 0.3 mm.

Измерение термоэдс проводилось в интервале температур 77–300 К до давления 12.5 kbar. Использовался метод продольного теплового потока с постоянной выделяемой нагревателем мощностью [6]. Градиент температуры измерялся термопарой (Cu + 0.1% Fe + 0.01% Li)–Cu, абсолютная величина T измерялась термопарой (Cu + 0.15% Fe)–Cu. Перепад температуры на образце при постоянной мощности нагревателя изменялся от 0.09 до 0.045 К с ростом давления от 0 до 12 kbar. Термоэдс образца определялась относительно Cu. Поправка бралась из литературы и наших измерений термоэдс Cu относительно сверхпроводника Y-123. Зависимость термоэдс меди от давления не учитывалась ввиду малости поправки.

2. Результаты измерений

2.1. Термоэдс. Результаты измерений термоэдс α на нашем образце La_{0.875}Sr_{0.125}MnO₃ представлены на рис. 1. Все кривые при разных давлениях в области T = 80-300 К имеют три экстремума: два максимума с $T_{\alpha 1 \text{ max}} \sim 130$ К, $T_{\alpha 2 \text{ max}} = 225-255$ К и минимум с $T_{\alpha \min} = 177-185$ К. Во всем интервале температур $\alpha > 0$. Отметим, что температуры экстремумов для $\alpha(T)$ и электросопротивления $\rho(T)$ не совпадают в отличие от образцов с x = 0.18 [7]. Первый экстремум α при $T_{\alpha 1 \max}$ находится в области перехода к упорядоченной фазе [3], начало которого мы относим к ~130 К.

С ростом давления максимум $\alpha_{1 \max}$ сначала увеличивается, затем при давлении P = 9.2 kbar слегка уменьшается и резко возрастает при P = 12.5 kbar. Также немонотонно зависит от давления и $T_{\alpha 1 \text{ max}}$: до P = 9.2 kbarрастет, а при P = 12.5 kbar возвращается к значению при P = 0. Максимум $\alpha_{2 \max}$ при $T_{\alpha 2 \max} \sim 250$ К превосходит по величине $\alpha_{1 \max}$ в области давлений P < 10 kbar почти в 2 раза. Лежит он выше T_C (~200 K), полученной из данных по электросопротивлению, в согласии с фазовой диаграммой [8] в области парамагнитного изолятора. По сравнению с $\alpha_{1 \max}$ под давлением он ведет себя противоположным образом. До $P = 9.2 \,\text{kbar} \,\alpha_{2 \,\text{max}}$ уменьшается по абсолютной величине и сдвигается в сторону меньших температур. При давлении P = 12.5 kbar, не изменившись по величине по сравнению с $P = 9.2 \, \text{kbar}$, он сдвигается в область меньших температур примерно на 20 К. Минимум α_{\min} находится посредине между *T_{CO}* и *T_C*. Это единственный экстремум, который монотонно зависит от давления: α_{\min} и $T_{\alpha\min}$ растут $dT_{\alpha \min}/dP = 1.7 \text{ K/kbar}, \ d\alpha_{\min}/dP = 2.1 (\mu \text{V/K})/\text{kbar}.$ Кривая $\alpha(T)$ при давлении 12.5 kbar, сохраняя общие черты с $\alpha(T)$ при меньших давлениях, резко выделяется среди них изменением абсолютной величины α и сильным сдвигом экстремума $\alpha_{2 \max}$ в область низких температур. На месте ожидавшегося экстремума видна лишь небольшая особенность.

Рис. 1. Температурная зависимость термоэдс La_{0.875}Sr_{0.125}MnO₃ при различных давлениях. *P*, kbar: *1* — 0, *2* — 4.3, *3* — 9.5, *4* — 12.5.

Рис. 2. Температурная зависимость электросопротивления La_{0.875}Sr_{0.125}MnO₃ при различных давлениях. *P*, kbar: I = 0, 2 = 4.3, 3 = 4.3 (спустя 3 дня), 4 = 4.3 (спустя 6 дней), 5 = 9.2.

Переход при $T = 282 \,\mathrm{K}$, видимый на кривой $\rho(T)$ при атмосферном давлении, на кривых $\alpha(T)$ ввиду его малости мы не наблюдали.

2.2. Электросопротивление. На рис. 2 представлены наши результаты по электросопротивлению ρ образца в зависимости от температуры и давления. С понижением от 300 K до $T_{\text{max}}(\rho) = 202 - 212$ K при всех давлениях ρ растет, имея полупроводниковый характер. $T_{\text{max}}(\rho)$ обычно принимают за T_C (температуру Кюри) — начало ферромагнитного (ФМ) упорядочения. При Т < Т_С ρ падает, как у ферромагнетиков, до нечеткого минимума $T_{\min}(\rho) \approx 150 - 155 \, \mathrm{K}$. Эту точку считают точкой орбитально-зарядового упорядочения *T_{CO}* [4]. Оставляя это обозначение, мы считаем, что настоящее упорядочение, как показано далее, происходит при температуре $T_{\alpha 1 \max} \approx 130$ К. При $T < T_{CO} \rho$ также носит полупроводниковый характер. Под давлением ρ падает, T_C смещается в сторону больших температур со средней скоростью $dT_C/dP = 1.6$ K/kbar.

Поскольку минимум $\rho(T)$ выражен нечетко, о смещении T_{CO} в зависимости от давления судить затруднительно. Следует отметить, что выдержка при давлении P = 4.3 kbar в течение 2 недель показала непрерывный рост кривой $\rho(T)$, особенно заметный в области $T < T_C$. При этом положения T_C и T_{CO} не изменились.

При давлении P = 4.3 kbar и температуре T = 282 K наблюдался небольшой скачок ρ на ~0.1% с шириной скачка ~0.1 K. Переход имел небольшой (~0.1 K) тепловой гистерезис со смещением перепада температур при отогреве в сторону меньших T. При больших давлениях переход обнаружить с достоверностью не удалось ввиду его широкой размазанности по температуре.

В области $\alpha_{2 \max}$ наблюдалась небольшая аномалия ρ , хорошо заметная на рис. 3, на котором показаны зависимость $\ln \rho(T)$ и перепад температуры ΔT на образце при атмосферном давлении и постоянной мощности, выделяемой в нагревателе. Видно, что в области $T_{\alpha 2 \max} \approx 250$ К одновременно с увеличением ρ растет и перепад ΔT на образце, пропорциональный теплосопротивлению R_T .

Рис. 3. Температурная зависимость логарифма электросопротивления ρ La_{0.875}Sr_{0.125}MnO₃ и перепада температур ΔT на образце при давлении P = 0.

Но если после аномалии ρ продолжает расти, то R_T начинает падать и при T_C достигает минимума. Подобная картина имела место лишь при P = 0, когда R_T образца не шунтировалось передающей давление средой.

3. Обсуждение результатов

Общий характер наших кривых термоэдс $\alpha(T)$ в области 80–300 К с двумя максимумами и одним минимумом (рис. 1) напоминает характер кривых, снятых на образцах с x = 0.12, 0.14 и 0.15 [4] и x = 0.18 [7]. Сильное расхождение по абсолютной величине нашей кривой $\alpha(T)$ и аналогичной кривой при x = 0.12 [4] мы приписываем прежде всего тому, что наш образец соответствует стехиометрическому составу для образования особой упорядоченной фазы. В фазовой диаграмме La–Sr–Mn–О особая роль выпадает составу с x = 0.125 в связи с появлением новой упорядоченной ячейки, соизмеримой с решеткой кристалла. Следует отметить, что x = 0.125 = 1/8 — особая концентрация и в перовскитных ВТСП-купратах [9].

Согласно [10], в образце с x = 0.125 при T = 160 К происходит структурный переход $O' \rightarrow O^*$ — в орторомбическую фазу с малыми ян-теллеровскими (J-T)-искажениями. В работе [11] на образце с x = 0.12 методом резонансного рентгеновского рассеяния в точке структурного фазового перехода $O' \rightarrow O^*$ при T = 145 К обнаружено орбитальное упорядочение (OO) со структурной модуляцией вдоль оси *с*. Зарядового упорядочения (CO) в плоскости (001), которое упоминается в [3], обнаружено не было. В работе [12] рассчитано несколько вариантов зарядового упорядочения, которые в эксперименте [11] не могли быть обнаружены ввиду малой разности числа 3d-электронов на ионах Mn^{3+} и Mn^{4+} .

Особое внимание следует обратить на сильное расхождение между температурой второго максимума термоэдс и температурой Кюри. Положение второго максимума термоэдс при атмосферном давлении (256 K) намного выше $T_C = 202$ K. Похожая картина наблюдается и в образце с x = 0.12 [4]. В то же время в экспериментах с образцами x = 0.15 [4] и 0.18 [7] наблюдались близкие значения температур $T_{\alpha 2 \text{ max}}$ и T_C . Хотя упомянутый максимум находится в области парамагнитного изолятора, его происхождение тесно связано с переходом в ФМ-состояние при T_C . Согласно теории [13,14] и экспериментам [15], ферромагнитные кластеры (поляроны размером ~12 Å) начинают зарождаться при $T \sim 1.8T_C$. С понижением температуры они увеличиваются в размерах и в точке T_C смыкаются, образуя непрерывный путь для прохождения тока [13,14]. Но на термоэдс эти кластеры начинают оказывать влияние задолго до точки Кюри.

Существование Φ М-кластеров при $T > T_C$ подтверждается экспериментами по рассеянию нейтронов на малые углы и по магнитной восприимчивости [15]. Согласно нейтронографическим данным [10], при понижении температуры в образце $La_{1-x}Sr_xMnO_3$ с x = 0.125в точке T_H = 260 К происходит структурный переход орторомбической (псевдокубической) фазы О в орторомбическую фазу О', в которой имеют место большие *J*-*T*-искажения решетки. Возможно, что обнаруженные нами аномалии электро- и теплосопротивлений при $T_{\alpha 2 \max}$ (рис. 3) и сам максимум α при T = 256 К объясняются этим фазовым переходом. Этот переход, весьма вероятно, сильно способствует образованию ФМ-кластеров. Поэтому уменьшение α при $T < T_{\alpha 2 \max}$ начинается значительно раньше Т_С, а само смыкание кластеров происходит монотонно. Согласно предположению авторов [10], ФМ-упорядочение сильно противодействует J-T-искажениям, что приводит при $T_L = 160 \,\mathrm{K}$ к структурному переходу $O' \rightarrow O^*$.

В результате этого перехода точка Кюри T_C в наших экспериментах оказалась в середине температурного интервала фазы O', а граница фазы T_L почти совпала с температурой $T_{CO} \approx 150-155$ К, которую связывают с образованием упорядоченной фазы [3,11].

Точка $T_{\alpha \min} = 175 \, \text{K}$ занимает промежуточное положение между ТСО и ТС и, весьма возможно, связана с некоторым магнитным упорядочением. В точке Тсо кривые $\alpha(T)$ не обнаруживают аномалии в пределах точности эксперимента. Возможно, что при Тсо происходит не образование СО-фазы, а магнитный переход. Так, в работе [16] на образце $La_{1-x}Sr_xMnO_3$ с x = 0.1при $T = 100 - 110 \,\mathrm{K}$ наблюдали новую фазу с повышенной магнитной восприимчивостью, сильно зависящую от магнитного поля. Согласно нашим предположениям, переход к новой ОО-фазе происходит при температуре $T_{\alpha 1 \max} \approx 130 \,\mathrm{K}$. В этой фазе α с понижением температуры падает, а ρ круго возрастает. В области *T*_{α1 max}-*T*_{CO} ρ имеет слабый полупроводниковый ход. Таким образом, новая фаза в этой области носит черты ФМ-изолятора.

Под давлением температура T_C , определенная по зависимости $\rho(T)$ (рис. 2), и $T_{\alpha 2 \max}$ двигаются навстречу друг другу: T_C растет, $T_{\alpha 2 \max}$ падает. При давлении P = 12.5 kbar величина T_C , полученная из дан-

Рис. 4. Температурная зависимость термоэдс α при атмосферном давлении La_{1-x}Sr_xMnO₃ с разным содержанием *x*: 0.12 [4], 0.125 (настоящая работа), 0.15 [4], 0.18 [7]. На вставке — зависимость $\alpha_{1 \text{ max}}$ от *x* указанных составов.

ных по ρ путем экстраполяции, очень близка к значению $T_{\alpha 2 \text{ max}}$. Можно предположить, что при этом *P* система очень близка к фазовому переходу в ферромагнитнометаллическое состояние, для которого оба максимума совпадают [4,7]. О возможности наличия фазового перехода под давлением свидетельствует T-P-фазовая диаграмма для образца с x = 0.14 [4]. Переход в фазу ферромагнитного металла при P > 11 kbar, а затем переход металл-изолятор при понижении температуры, возможно, и объясняют резкий сдвиг по температуре обоих максимумов α и изменение их величин.

На рис. 4 представлены температурные зависимости при P = 0 термоэдс La_{1-x}Sr_xMnO₃ при разных значениях х из [4,7] и наши данные. Хорошо видно, что с ростом x оба максимума $\alpha(T)$ уменьшаются по величине. Температуры максимумов зависят от *x* по-разному. Если $T_{\alpha 2 \max}$ с ростом *x* увеличивается, то $T_{\alpha 1 \max}$ меняется немонотонно. α_{\min} слабо зависит от x, а $T_{\alpha \min}$ сдвигается в сторону больших значений идентично $T_C(x)$. Согласно нашим предположениям, стехиометрический состав x = 0.125 должен проявить себя в области температур $T < T_{\alpha 1 \max}$. На вставке к рис. 4 это демонстрируется зависимостью $\alpha_{1 \max}(x)$. Резкий скачок более чем в 6 раз $\alpha_{1 \text{ max}}$ при переходе от состава x = 0.125 к x = 0.12, возможно, и свидетельствует о том, что образование стехиометрической СО-фазы происходит при значении x, достаточно близком к составу нашего образца.

Все главные различия результатов работы [4] и наших данных можно отнести к двум разным фазовым состояниям образцов с x = 0.12 и 0.125. Фазовым переходом при значениях x = N/8 (N — целое число) были объяснены результаты многих работ по перовскитным купратам, а также по перовскитным манганатам (например, [17]).

Интересна зависимость $\rho(T)$ от времени при давлении 4.3 kbar. Последовательные измерения во времени обнаружили непрерывный рост ρ , особенно заметный в области температур T < 200 K. За 2 месяца выдержки под давлением ρ возросло более чем на 50% при

неизменности величин T_C и T_{CO} . При этом изменение величины термоэдс $\alpha(T)$ не превосходило ошибки эксперимента. Нам представляется, что это связано с упорядочением со временем примеси, рассеивающей дырки. При этом корреляция между рассеивающими центрами растет, увеличиваются вероятность рассеивания $\sim 1/\tau$, а следовательно, и электросопротивление ρ . Термоэдс же зависит, скорее, но от абсолютного значения постоянной времени τ , а от ее энергетической зависимости $\tau(E)$, которая не претерпевает заметного изменения. Поскольку измерения $\rho(T)$ велись после временной выдержки, вопрос о влиянии давления на ρ не выяснен.

При $T > T_{\max}(\rho)$ происходит переход из ферромагнитного в парамагнитное состояние, и $\rho(T)$ имеет полупроводниковый ход. Динамическая ян-теллеровская деформация в диапазоне x = 0.1-0.3 остается. Падение $\rho(T)$ при температуре $T > T_{\max}(\rho)$ соответствует наличию щели величиной 0.2 eV при 300 K, обнаруженной в работе [18] на образцах с x = 0-0.4. Щель соответствует механизму перехода по Мотту [14]. По критерию Мотта, $\rho \sim \alpha$ и давление его уменьшает.

В LaMnO₃ при конечном легировании Sr при температуре $T > T_C$, согласно [14], реализуется спектр зонного диэлектрика, расщепленный на четыре ветви, когда на кубическую решетку накладывается сверхструктура за счет ян-теллеровского искажения октаэдров MnO₆. При росте концентрации дырок сверхструктура становится энергетически невыгодной, происходит переход первого рода, приводящий к появлению сосуществующих кластеров, богатых и бедных дырками. Возможно, в этом причина наблюдавшегося в [4] и в настоящей работе перехода при T = 282 K.

Как указывается в [13,14], одна дырка, возникающая от одного иона Sr, может локализоваться на восьми эквивалентных узлах Mn⁴⁺ и волновая функция дырки распространяется за пределы ячейки; в результате возникает корреляция между узлами, что и приводит к ФМ-намагничиванию спинов ионов Mn, окружающих ион Sr²⁺. Пороговая величина *x* — та, при которой двухвалентные ионы Sr²⁺ из соседних узлов начинают формировать бесконечный проводящий кластер. Можно предположить, что спад $\rho(T)$ и ρ_{max} , наблюдавшийся и в [4] и в настоящей работе при $T_{CO} < T < T_C$, растянутый по температуре на \sim 50 K, уже соответствует перколяционному протеканию носителей вдоль связей между узлами. Часть образца вне путей переноса заряда в проводящей ФМ-фазе будет занята диэлектрической фазой [13,14]. В наличии двухфазности проявляется сходство механизмов легирования в манганатах и ВТСП-купратах.

Проведенное исследование позволяет сделать следующие выводы.

1) Измерены барические зависимости величин $\alpha(T)$ и $\rho(T)$ образца La_{1-x}Sr_xMnO₃ со значением x = 0.125, являющимся стехиометрическим (удовлетворяющим соотношению N/8) для образования особой упорядоченной орторомбической фазы. 2) Наблюдались два максимума в зависимости $\alpha(T)$. Первый, низкотемпературный, максимум мы связываем с образованием ФМ-изоляторной фазы. Второй — высокотемпературный — со структурным переходом фаз $O \rightarrow O'$ и образованием ФМ-кластеров.

3) Делается предположение, что в области температур $T_{\alpha 1 \max} - T_{CO}$ существует особая ФМ-фаза со слабой локализацией носителей и повышенной магнитной восприимчивостью.

4) На основе моделей [13,14] обсуждены зависимости термоэдс α и электросопротивления ρ от давления и температуры. Предполагается, что в области давлений 9–12 kbar происходит фазовый переход из ФМ-поляронного состояния в ФМ-металлическое.

5) Наблюдавшийся при давлении P = 4.3 kbar скачок электросопротивления при температуре T = 282 K связывается нами с возникновением сегрегации на области, богатые и бедные дырками.

Авторы выражают благодарность Э.Л. Нагаеву за полезные советы и Л.И. Королёвой за плодотворное обсуждение полученных результатов.

Список литературы

- Е.С. Ицкевич, В.Ф. Крайденов, И.Г. Куземская. ЖЭТФ 118, 3(9), 1 (2000).
- [2] J.-S. Zhou, J.B. Goodenough. Phys. Rev. Lett. 77, 1, 151 (1996).
- [3] Y. Yamada, O. Hino, S. Nohdo, R. Kanao, T. Inami, S. Katano. Phys. Rev. Lett. 77, 5, 904 (1996).
- [4] J.-S. Zhou, J.B. Goodenough, A. Asamitsu, Y. Tokura. Phys. Rev. Lett. **79**, *17*, 3234 (1997); J.-S. Zhou, J.B. Goodenough. Phys. Rev. **B62**, *6*, 3834 (2000).
- [5] A.M. Balbashov, S.K. Egorov. J. Crystal Growth 52, 2, 498 (1981).
- [6] С.Л. Будько, А.Г. Гапотченко, Е.С. Ицкевич, В.Ф. Крайденов. ПТЭ 5, 189 (1986); В.Ф. Крайденов, Е.С. Ицкевич. ФНТ 22, 9, 1028 (1996).
- [7] A. Asamitsu, Y. Morimoto, Y. Tokura. Phys. Rev. B53, 6, 2952 (1996).
- [8] A. Urushibara, Y. Morimoto, T. Arima, A. Asamitsu, G. Kido, Y. Tokura. Phys. Rev. B51, 20, 14102 (1995).
- [9] A. Bianconi, M. Missuri. Solid State Commun. **91**, *4*, 287 (1994).
- [10] H. Kawano, R. Kajimoto, V. Kubota, H. Yoshizawa. Phys. Rev. B53, 5, 2202 (1996); Ibid 22, 14709 (1996).
- [11] J. Endoh, K. Xirota, S. Ishibara, S. Okamoto, Y. Murakami, A. Nishizawa, T. Fukuda, H. Kimura, H. Nojiri, K. Kaneko, S. Maekawa. Phys. Rev. Lett. 82, 21, 4328 (1999).
- [12] T. Mizokawa, D.I. Khomskii, G.A. Sawatzky. Phys. Rev. B61, 6, R3776 (2000).
- [13] Э.Д. Нагаев. УФН 166, 8, 833 (1996).
- [14] Л.П. Горьков. УФН **168**, *6*, 665 (1998).

- [15] J.M. De Teresa, M.R. Ibarra, P.A. Algarabel, C. Ritter, C. Marquina, J. Blasko, J. Garcia, A. del Moral, Z. Arnold. Nature 386, 256 (1997).
- [16] K. Ghosh, R.L. Green, S.T. Loflanad, S.M. Bhagat, S.G. Karabashev, D.A. Shulyatev, A.A. Arsenov, Y. Mukovskii. Phys. Rev. B58, 13, 8206 (1998).
- [17] Abstracts 2nd Int. Conf on Stripes. Rome (1998).
- [18] A. Chainemi, H. Mathew, D. Sarma. Phys. Rev. 47, 15397 (1993).