Динамическая диффузия гелия в различные типы твердых тел при их деформации и диспергировании

© О.В. Клявин, Б.А. Мамырин, Л.В. Хабарин, Ю.М. Чернов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: klyavin@mail.ioffe.ru

Установлены и проанализированы количественные закономерности проникновения атомов гелия в различные типы твердых тел в процессе их пластической деформации в жидком ³He (T = 0.6-1.8 K) и ⁴He (T = 4.2 K) и диспергирования в газообразном гелии при 300 K. Эксперименты выполнены на металлах с различным типом решетки, ионных монокристаллах, аморфных сплавах и диспергированных в гелии порошках барита и диоксида титана. Получены кривые экстракции гелия из деформированных образцов при их динамическом отжиге. Обнаружено наличие корреляции между температурными диапазонами выделения гелия, температурами плавления, исходной и деформированной структурой материалов, определяющей число и характер ловушек гелия в них. Обсуждается зависимость интенсивности проникновения гелия от типа дефектов, возникающих в процессе пластической деформации различных материалов, а также появление химической связи атомов гелия с их дефектной структурой.

В основе исследований механохимического проникновения частиц внешней среды в различные типы твердых тел лежит обнаруженное ранее явление дислокационнодинамической диффузии — проникновения атомов и молекул внешней среды в кристаллические материалы в процессе их пластической деформации по зарождающимся и движущимся дислокациям [1,2]. Наличие градиента химического потенциала на границе твердое теловнешняя среда, а также больших амплитуд колебаний атомов в движущихся дислокациях, приводящих к динамическому понижению потенциальных барьеров в их ядрах, обеспечивает эффективное проникновение частиц среды в поверхностный слой деформируемых материалов. В зависимости от типа атомов или молекул среды (их размеров и химического сродства), атомных параметров структуры материала, типов дислокаций, структуры и размеров примесных центров, содержащихся в поверхностном слое материала, последний может либо упрочняться, либо разупрочняться. Атомные частицы, находящиеся в ядрах движущихся дислокаций, приводят к изменению энергетических параметров процесса их взаимодействия с примесными центрами (стопорами), на которых они размножаются в поверхностном слое деформируемых материалов.

Цель настоящей работы — получение и совокупный анализ кривых экстракции гелия из кристаллических материалов и аморфных эвтектических сплавов, имеющих разную исходную структуру и подвергнутых различной степени деформации в среде жидкого ³Не и ⁴Не (T = 0.6-4.2 K), а также диспергированных в газообразном гелии при 300 K.

1. Материалы и методики

В процессе исследований были использованы следующие материалы: металлы с решеткой ГЦК (Al, Cu, Pb), ГПУ (Cd), ОЦК (α-Ti), ОЦК тетрагональной (Sn), тетрагональной (BaSO₄), ромбической (TiO₂), ионные монокристаллы (NaCl, LiF), аморфные эвтектические сплавы — пленки Ni₇₈-Si₈-B₁₄ (10×60×0.125 mm) и Pd_{84.5}-Si_{15.5} (2×60×0.06 mm), порошки барита $(BaSO_4, d = 100 \,\mu m)$ и рутила (TiO₂, $d = 150 \,\mu m$). Перечислим основные характеристики (чистота, исходная структура и условия испытаний) использованных материалов: А1 (99.9%), поликристаллы (размер зерна $d = 0.15 - 0.17 \,\mathrm{mm}$), растяжение, скорость деформации $\dot{\varepsilon} = 10^{-4} \,\mathrm{s}^{-1}, \ T = 0.6 \,\mathrm{K}; \ \mathrm{Cu} \ (99.998\%), \$ монокристаллы, растяжение, $\dot{\varepsilon} = 10^{-4} \, \mathrm{s}^{-1}$, $T = 4.2 \, \mathrm{K}$; Cu (99.996%), нанокристаллы (d = 200 nm), сжатие, $\dot{\varepsilon} = 10^{-4} \text{ s}^{-1}$, T = 4.2 K; Sn (99.998%), монокристаллы, растяжение, $\dot{\varepsilon} = 10^{-3} \,\mathrm{s}^{-1}, \ T = 3 \,\mathrm{K}; \ \mathrm{Cd} \ (99.8\%),$ поликристалл, растяжение, $\dot{\varepsilon} = 10^{-4} \, \mathrm{s}^{-1}$, $T = 3 \, \mathrm{K}$; Pb (технический), сжатие, $\dot{\varepsilon} = 10^{-4} \, \text{s}^{-1}$, $T = 3 \, \text{K}$; α -Ті (99.94%), поликристалл (фольга толщиной 0.1 mm), растяжение, $\dot{\varepsilon} = 10^{-4} \, \mathrm{s}^{-1}$, $T = 4.2 \, \text{K}$; ионные монокристаллы NaCl, LiF (марка ЛОМО), сжатие, $\dot{\varepsilon} = 10^{-4} \, \text{s}^{-1}$, $T = 3 \, \text{K}$; аморфные эвтектические пленки $Pd_{84.5}$ -Si_{15.5}, T = 0.6 K, Ni₇₈-Si₈-B₁₄, $T = 4.2 \,\mathrm{K}$, растяжение, $0.02 \,\mathrm{mm/min}$. Порошки BaSO₄ и TiO₂ диспергировались в шаровой мельнице в стандартном режиме ее работы (5 h). Испытания в среде жидкого ³Не проводились на специальной машине конструкции УФТИ (Харьков) [3], а в ⁴Не — на машине конструкции ФТИ им. А.Ф. Иоффе РАН (Санкт-Петербург) [4].

Содержание гелия в деформированных образцах определялось с помощью высокоразрешающего резонансного масс-спектрометра [5] с чувствительностью по ³He ~ 10^5 at, а по ⁴He ~ 10^9 at. Были получены кривые экстракции гелия из деформированных образцов различных материалов при их динамическом отжиге со скоростями 5–10 K/min. По ним строились зависимости доли *F* выделившегося гелия от температуры *T* и приведенной температуры *T*/*T_s*, где *T_s* — температура плавления материала.

Результаты исследований и их обсуждение

На основе кривых динамического отжига деформированных в жидком гелии материалов были построены зависимости $F(T/T_s)$. Они были получены для всех исследованных образцов, содержащих приблизительно одинаковое количество гелия на единицу их поверхности (N, at/cm²). Эти кривые имеют *S*-образный вид (рис. 1, *a*, *b*), указывающий на три стадии экстракции гелия с различной протяженностью в зависимости от типа материала, его исходной и деформированной структуры и температуры плавления. Это

Рис. 1. Зависимость доли *F* гелия, выделившегося из материалов с различной температурой плавления, от приведенной температуры T/T_s их отжига. *a*) I — BaSO₄, 2 — TiO₂, 3 — Ti, 4 — NaCl, 5 — Cu, 6 — LiF; *b*) 7 — Al, 8 — Ni₇₈–Si₈–B₁₄, 9 — Pb, 10 — Cd, 11 — Pd_{84.5}–Si_{15.5}, 12 — Sn.

Рис. 2. Кривые экстракции гелия из порошков BaSO₄ (*1*, *2*) и TiO₂ (*3*), диспергированных в шаровой мельнице при 300 К. *1* — исходный порошок, *2*, *3* — после диспергирования в гелии.

низкотемпературная стадия $T = (0.2 - 0.3)T_s$, стадия в окрестности и при температуре рекристаллизации материала $T = (0.4 - 0.6)T_s$ и высокотемпературная стадия (в окрестности, при и выше T_s). Наличие различных стадий и число максимумов выделения гелия на кривых его экстракции определяются различными параметрами. К ним относятся тип и температура плавления материала, характер его исходной дефектной и деформированной структуры, определяющей различные типа ловушек гелия, возникающих в процессе пластической деформации. Рассмотрим полученные зависимости более подробно. Кривые 1-6 относятся соответственно к BaSO₄ ($T_s = 1853$ K), TiO₂ ($T_s = 1833$ K), Ti $(T_s = 1933 \text{ K})$, NaCl $(T_s = 1073 \text{ K})$, Cu $(T_s = 1356 \text{ K})$, LiF ($T_s = 1113$ K). Эти материалы имеют высокую температуру плавления, все кривые для них располагаются в области $T/T_s = 0.15 - 0.65$.

Исследование порошков BaSO₄ и TiO₂ (макроскопически хрупких, кристаллических, но не металлических материалов) показало наличие в них значительного количества гелия после диспергирования в шаровой мельнице в атмосфере Не. Кривые его экстракции приведены на рис. 2. Они находятся в области $T = (0.15 - 0.33)T_s$ этих материалов. В порошке BaSO₄ до начала его дробления в исходном состоянии имеются два максимума выделения гелия при $T = 480 \text{ K} (0.25 T_s)$ и $T = 600 \text{ K} (0.33 T_s)$. После диспергирования порошка максимум при $T = 600 \, \text{K}$ значительно уменьшается, а при $T = 480 \,\mathrm{K}$, наоборот, резко увеличивается (ср. кривые 1, 2). Это означает, что происходит перекачка атомов гелия из более глубоких ловушек в более мелкие, образовавшиеся в процессе его диспергирования. При этом количество гелия в порошке возрастает в 9 раз

Рис. 3. Кривые экстракции гелия из титана, деформированного при T = 4.2 К, $\varepsilon = 5\%$, с количеством гелия $1.5 \cdot 10^{11}$ (1) и $3 \cdot 10^{11}$ at/cm² (2).

(с $3 \cdot 10^{13}$ до $28 \cdot 10^{13}$ at/g). В диспергированном порошке TiO₂ обнаруживаются два близко расположенных максимума при $T = 420 - 460 \,\mathrm{K} \,(0.22 - 0.25) T_s$, а количество гелия увеличивается в 13 раз (с 0.1 · 10¹³ до $1.3 \cdot 10^{13}$ at/g). Для обоих типов порошков диаметр частиц после их диспергирования в гелии уменьшается на 40% (по сравнению с 20% в атмосфере воздуха). Полученный результат означает, что гелий эффективно проникает в порошки TiO2 и BaSO4. Возникающие в процессе диспергирования частиц порошков микротрещины приводят к их микропластической деформации за счет рождения коротких дислокационных петель вблизи фронта распространения микротрещин. Гелий, проникший в дислокации, закрепляет их, что приводит к дополнительному охрупчиванию частиц порошка, а следовательно, и к облегчению их диспергирования. Закрепление дислокаций атомами гелия исследовалось методом машинного моделирования в [6] на примере винтовой дислокации в ОЦК-решетке железа. Полученные данные показывают, что эффективность этого процесса может быть существенно повышена в специально подобранной газовой среде, что может иметь большое практическое значение для промышленных технологий диспергирования различных типов материалов.

Для поликристаллического титана с высокой $T_s = 1933$ К также характерен узкий диапазон выделения гелия в области $T = (0.2-0.6)T_s$ (кривая 3 на рис. 1, *a*) при наличии трех низкотемпературных максимумов (T = 520, 700, 870 К, рис. 3). Повышение количества гелия с $1.5 \cdot 10^{11}$ до $3 \cdot 10^{11}$ аt/сm² в деформированных при 4.2 К образцах ($\varepsilon = 5\%$) приводит к росту этих максимумов и появлению нового пика при T = 1000 К (ср. кривые I, 2 на рис. 3), связанного с возникновением более глубоких ловушек гелия. Для монокристаллов NaCl ($T_s = 1073$ К), LiF ($T_s = 1113$ К) и Cu ($T_s = 1356$ К) диапазон выделения гелия несколько сдвигается в сторону более высоких температур (0.25-0.65) T_s (кривые 4-6 на рис. 1, *a*). Кривые экстракции гелия из Cu и NaCl имеют по два широких

максимума соответственно при $T = 570, 670 \, \text{K}$ и $T = 420, 570 \,\mathrm{K}$ [7]. Монокристаллы LiF характеризуются тремя максимумами выделения гелия при T = 420, 480, 620 K [1]. Согласно данным о выделении гелия из междоузлий [8] и бивакансий [9] $(T = 420 \, \mathrm{K})$, моновакансий (T = 480 K) [10] и краевых дислокаций (T = 620 K), они связаны с энергиями активации $E_1 = 0.32 \text{ eV}, E_2 = 0.63 \text{ eV}, E_3 = 0.42 \text{ eV}$ соответственно. Энергия Е₃ совпадает с энергией связи атомов гелия с катионами решетки кристаллов LiF, определенной также экспериментально в [11] методом гелиевой спектроскопии. Она указывает на наличие химической связи атомов гелия при их взаимодействии с решеткой, а следовательно, и с движущимися дислокациями, в которые он проникает в процессе пластической деформации этих кристаллов. Эта энергия оказалась в 30 раз больше, чем ван-дер-ваальсово взаимодействие, характерное для инертных газов.

При дальнейшем понижении температуры плавления металлов Al $(T_s = 932 \text{ K})$, Pb $(T_s = 601 \text{ K})$, Cd $(T_s = 594 \text{ K})$, Sn $(T_s = 505 \text{ K})$ кривые $F(T/T_s)$ pacполагаются в очень широком интервале температур $(0.25-1.3)T/T_s$ (кривые 7, 9, 10, 12 на рис. 1, b). Важно отметить, что зависимость $F(T/T_s)$ для олова (кривая 12) резко отличается от таковых для Al, Cd, Pb. Она располагается в значительно более узком интервале температур $T/T_s \sim 0.8-1.1$. Можно предположить, что это связано с различной исходной структурой этих металлов. Образцы олова являются монокристаллами, в то время как Al, Pb, Cd — поликристаллы. Поэтому число ловушек гелия различной глубины в поликристаллических образцах из-за наличия в них зерен и дополнительного зернограничного механизма их деформации оказалось значительно бо́льшим, чем в случае олова. Причем особенно выделяются кадмий и свинец, имеющие практически одинаковые температуры плавления. Примерно 20% гелия из них продолжает выделяться при температуре на 100-200 К выше их T_s (кривые 9, 10). Интенсивность процесса рекристаллизации деформированной структуры кадмия настолько велика, что после максимальной преддеформации при 4.2 К (7%) кривая его растяжения практически совпадает с кривой, полученной при 300 К [12]. Это означает, что при отогреве образцов от 4.2 до 300 К и дальнейшем их динамическом отжиге происходит интенсивный процесс снятия внутренних напряжений и рекристаллизации деформированной структуры кадмия на счет аннигиляции дислокаций и роста размеров зерен при наличии в нем высокой плотности термических и деформационных вакансий. Последние объединяются в поры, в которых накапливаются атомы гелия. В процессе динамического отжига деформированных образцов поры растут, и при $T > T_s$ они выходят из расплава, приводя к появлению больших и широких максимумов выделения гелия [12].

Рассмотрим кривые экстракции гелия из аморфных эвтектических пленок (АП) Ni_{78} - Si_8 - B_{14} ($T_s = 1223$ K) и $Pd_{84.5}$ - $Si_{15.5}$ ($T_s = 1073$ K) (кривые 8, 11 на рис. 1, b),

имеющих высокую T_s. Они располагаются в очень широкой области температур $(T/T_s \sim 0.25 - 1.15)$, практически совпадающей с наблюдаемой для материалов с низкой T_s (ср. рис. 1, а и b). Причина такого несоответствия связана со спецификой атомной структуры АП, состоящей из кластеров типа металл-металлоид. Они разделены межкластерными прослойками с очень рыхлой атомной структурой, содержащей разные типы дисклинационно-дислокационных дефектов, а также вакансионных и атомных конфигураций при наличии в объеме АП большого числа наноразмерных пор, особенно вблизи их наружной поверхности [13]. Эта специфика микроструктуры АП приводит к радикальному изменению механизма их пластической деформации. Он реализуется не за счет генерации дислокаций, а путем вязкого пластического течения материала вплоть до гелиевых температур [14]. Характерная особенность указанного механизма заключается в отсутствии процесса упрочнения деформируемых АП по сравнению с кристаллическими материалами. Процесс пластической деформации АП осуществляется по межкластерным границам (прослойкам). В них формируются пластические сдвиги путем, например, гомогенного зарождения квазидислокаций Сомилианы с переменным вектором Бюргерса, в которых отсутствуют дальнодействующие напряжения [15]. Кроме того, в жидком гелии пластическая деформация АП сопровождается локальным нагревом областей пластических сдвигов до температуры плавления материала, обнаруженным как экспериментально, так и теоретически [14]. Указанные выше причины приводят к резкому увеличению проникновения гелия в АП за счет образования в процессе их пластической деформации наноразмерных ловушек гелия различного типа и, следовательно, существованию очень широкой области температур его выделения, наблюдаемой на опыте и практически совпадающей с таковой для металлов с низкой T_s (рис. 1, *b*).

Описанная выше аномалия кривых $F(T/T_s)$ четко выявляется путем построения зависимости параметра T/T_s при F = 0.5 от T_s для всех материалов с разными T_s (рис. 4). Видно, что данные для кристаллических материалов укладываются на эту зависимость (экспоненциальную кривую) с небольшим разбросом, кроме значений для аморфных сплавов, которые далеко выходят за пределы полученной кривой. Для металлов с низкой T_s (Pb, Cd, Sn) доля F = 0.5 выделившегося из них гелия достигается в области температур $T/T_s = 0.8 - 0.95$, близких к их T_s , а для материалов с высокой T_s (BaSO₄, TiO₂, Ti, Cu, NaCl, LiF) эта доля достигается уже при $T/T_s = 0.2 - 0.55$. Это различие может быть связано с тем, что наличие больших сил связей в жестких решетках Ті, ТіО2, ВаSO4 приводит к образованию лишь неглубоких ловушек гелия, из которых он выходит в процессе экстракции при *T* « *T_s*. В металлах с металлическим (мягким) типом сил связей и низкой Т_s возникновение глубоких ловушек гелия значительно облегчается, и они выявляются при

Рис. 4. Зависимость параметра T/T_s при значении доли гелия, выделившегося из материалов с различной температурой плавления, F = 0.5 от T_s .

температурах, близких к их T_s . Алюминий занимает промежуточное положение по значению T_s между этими группами материалов (ср. рис. 1, *а* и *b*). Необходимо также учесть влияние поликристалличности алюминия на процесс образования глубоких ловушек гелия. Оба эти фактора приводят к расширению области выделения гелия в алюминии вплоть до температуры его плавления.

Возникает также вопрос о том, как влияют типы дефектов, возникающих в процессе пластической деформации материалов, на интенсивность проникновения в них гелия. В [16] для нанокристаллической меди экспериментально обнаружено, что этот металл при $T = 4.2 \, {\rm K}$ и малых $\varepsilon < 5\%$ деформируется путем движения и размножения дислокаций. С ростом степени деформации до $\varepsilon \sim 14\%$ процесс внутризеренного скольжения сменяется двойникованием, а при $\varepsilon > 14\%$ он происходит посредством зернограничного (поворотного) механизма деформации. При этом зависимость количества N гелия от є имеет нетривиальный характер. При малых є величины N повышаются в 3 раза по сравнению с недеформированным образцом. Далее, когда дислокационный механизм деформации переходит в двойникующий, проникновение гелия в деформируемый образец прекращается, так как процесс двойникования сопровождается очень малыми смещениями атомов, которые (в отличие от дислокаций) не обеспечивают проникновения гелия в деформируемый материал. При больших $\varepsilon > 14\%$ процесс двойникования в нанокристаллической меди сменяется скачкообразным межзеренным механизмом деформации, который усиливает проникновение гелия в деформируемые образцы. Возникающие при этом пово-

Рис. 5. Температурная зависимость доли *F* гелия, выделившегося из монокристаллической (1) и нанокристаллической (2, 3) меди. ε , %: 1, 2 — 14, 3 — 19.

ротные пластические сдвиги приводят к сильной локализации деформации, примерно на порядок большей, чем в дислокационные пластические сдвиги. Значения N при этом возрастают в 7 раз по сравнению с недеформированным образцом и оказываются примерно в 3 раза выше, чем на начальной стадии кривой их сжатия $\sigma(\varepsilon)$, когда реализуется дислокационный механизм деформации (соответственно $218 \cdot 10^9$ и $69 \cdot 10^9$ аt/cm²). При T = 4.2 К скачкообразная межзеренная деформация сопровождается значительным локальным нагревом образцов, достигающим десятков градусов [17]. Это усиливает локализацию деформации в межзеренных пластических сдвигах, а следовательно, и проникновение гелия в них.

Таким образом, изменение типов дефектов, обеспечивающих пластическое формоизменение нанокристаллической меди в последовательности дислокации– двойники–зернограничное скольжение, радикально меняет интенсивность проникновения атомов гелия в этот материал. Аморфизация исходной структуры кристаллических материалов также приводит к радикальному изменению характера ловушек гелия, а следовательно, и области температур, а также интенсивности его проникновения в деформируемые АП, которые обсуждались выше.

Исходная дефектная структура образцов меди также оказывает значительное влияние на характер выделения из них гелия. Для монокристаллов кривые F(T)имеют симметричный вид (кривая 1 на рис. 5), а в случае нанокристаллической меди при той же степени деформации ($\varepsilon = 14\%$) возникает площадка при T = 350-500 K (кривая 2). С ростом ε до 19% характер зависимости F(T) на начальной ее стадии не меняется (кривая 3), но она становится более пологой, выделение гелия продолжается до T = 900 K ($T = 0.6T_s$). Наличие площадки на кривых 2, 3 для нанокристаллической меди может быть обусловлено, как показано в [18], закреплением зернограничных дислокаций точечными дефектами (в отличие от монокристаллов, в которых они отсутствуют). Выполаживание и удлинение кривой 3 связано с активизацией зернограничного механизма деформации при $\varepsilon > 14\%$, который обеспечивает появление более глубоких ловушек гелия, находящихся в границах зерен (для кривой 2 этот механизм еще отсутствует).

Проведенные исследования закономерностей проникновения гелия в различные типы материалов показали, что интенсивность этого процесса зависит как от их исходной дефектной структуры, так и от типа возникающих в них наноразмерных деформационных дефектов. Эти данные, а также результаты, полученные на монокристаллах LiF [1], показывают, что атомы гелия могут химически связываться с различными типами деформационных дефектов в исследованных кристаллических и аморфных материалах. На это указывает наличие сильного изменения температурной области и количества выделяемого из деформированных образцов гелия в зависимости от температуры плавления материала и типа его атомной и дефектной струткуры. Более полный и однозначный ответ на вопрос об энергетических параметрах и типах ловушек гелия в исследованных материалах может быть получен с помощью методов динамического (с разными скоростями) и изотермического отжига деформированных в жидком гелии образцов. Этот вопрос требует дальнейших тщательных исследований.

Таким образом, носителями, обеспечивающими перенос частиц (атомов гелия) внешней среды в различные типы твердых тел (кристаллические и аморфные), являются движущиеся химически возбужденные наноразмерные дефекты (локализованные состояния групп атомов или молекул), находящиеся в процессе перестройки их электронной структуры вследствие пластической деформации или других динамических процессов изменения энергетических параметров взаимодействия частиц внешней среды с твердыми телами при воздействии на них механических полей. На эти процессы могут также влиять и другие физические поля, отличные от механических (например, магнитные) [19].

Список литературы

- O.V. Klyavin, N.P. Likhodedov, A.N. Orlov. Prog. Surf. Sci. 33, 4, 259 (1990).
- [2] О.В. Клявин. ФТТ **35**, *3*, 513 (1993).
- [3] В.И. Доценко, А.И. Ландау, В.В. Пустовалов. Современные проблемы низкотемпературной пластичности материалов. Наук. думка, Киев (1987). 162 с.
- [4] О.В. Клявин. Завод. лаб. 4, 461 (1963).
- [5] Б.А. Мамырин, Б.Н. Шустров, Г.С. Ануфриев. ЖТФ 42, 12, 2577 (1972).
- [6] О.В. Клявин, Н.В. Лиходедов, А.Н. Орлов. ФТТ 27, 11, 388 (1985).
- [7] О.В. Клявин, Б.А. Мамырин, Л.В. Хабарин, Ю.М. Чернов, В.С. Юденич. ФТТ 24, 7, 2001 (1982).
- [8] S. Kalbitzer, J. Kiko. Z. Naturf. 24a, 12, 1996 (1969).

- [9] Х.И. Амирханов, С.Б. Бранд, Е.П. Бартницкий. Радиогенный аргон в минералах и горных породах. Махачкала (1960). 202 с.
- [10] P. Subtitz, J. Teltov. Phys. Stat. Sol. 23, 1, 9 (1967).
- [11] А.И. Куприянов, А.Ю. Куркин. ФТТ 35, 11, 3003 (1993).
- [12] О.В. Клявин, Б.А. Мамырин, Л.В. Хабарин, Ю.М. Чернов, В.С. Юденич. ФТТ 44, 2, 291 (2002).
- [13] А.М. Глезер, Б.В. Молотилов. Структура и механические свойства аморфных сплавов. Металлургия, М. (1992). 208 с.
- [14] Е.Д. Табачникова, В.З. Бенгус, Э.С. Шумилин, Л.И. Воронова, Ю.Ф. Ефимов. Металлофизика **13**, *4*, 47 (1997).
- [15] А.К. Емалетдинов, Р.Л. Нуруллаев. XIV Петербургские чтения по преблемам прочности. Тез. докл. СПб (2003). С. 146.
- [16] О.В. Клявин, В.И. Николаев, Л.В. Хабарин, Ю.М. Чернов, В.В. Шпейзман. ФТТ 45, 12, 2187 (2003).
- [17] Г.А. Малыгин. ФТТ 39, 11, 2019 (1997).
- [18] Ю.А. Буренков, С.П. Никаноров, Б.И. Смирнов, В.И. Копылов. ФТТ **45**, *11*, 2017 (2003).
- [19] В.И. Альшиц, Е.В. Даринская, М.В. Колдаева, Е.А. Петржик. Кристалография 48, 5, 826 (2003).