Кинетика и энергетический баланс в механохимических превращениях

© П.Ю. Бутягин, А.Н. Стрелецкий

Институт химической физики им. Н.Н. Семенова Российской академии наук, 119991 Москва, Россия

E-mail: str@center.chph.ras.ru

Созданная С.Н. Журковым кинетическая теория прочности дополнена анализом расхода энергии при деформировании и разрушении твердых тел и их смесей. Кинетика образования структурных дефектов и химических реакций при деформировании и разрушении твердых тел представлена как функция затраченной работы. Рассмотрены результаты оценок и экспериментов по измерению энергетических выходов образования структурных дефектов, деформационного перемешивания и механохимических реакций.

Авторы благодарят Российский фонд фундаментальных исследований (грант № 04-03-32215), программу РАН "Направленный синтез веществ с заданными свойствами и создание функциональных материалов на их основе" (госконтракт № 12/04 от 11.05.2004) и программу ОХНМ РАН "Создание новых металлических, керамических, стекло-, полимерных и композиционных материалов" за финансовую поддержку работы.

1. Введение

Уравнение С.Н. Журкова (1) лежит в основе как кинетической теории прочности, так и механохимии науки о реакционной способности твердых тел при их деформировании и разрушении. Настоящая работа содержит результаты анализа кинетики и расхода энергии в процессах образования дефектов кристаллической структуры, деформационного перемешивания и химического синтеза при механических воздействиях на твердые тела.

2. Модель С.Н. Журкова

Кинетику разрывов межатомных связей, вызванных или ускоренных упругой деформацией твердых тел, анализируют с позиций классической химической кинетики. Основы этого подхода были развиты С.Н. Журковым [1] в многочисленных работах С.Н. Журкова и его школы и превратились из гипотезы в стройную теорию. Основные результаты собраны в ставшей классической монографии [2].

Согласно теории С.Н. Журкова, момент разрушения твердого тела под действием механических напряжений определяется временем жизни до разрыва деформированных межатомных связей

$$\tau = \tau_0 \exp(U_0 - \gamma \sigma) / RT, \tag{1}$$

где τ — время жизни до разрыва, τ_0 — период колебаний, $(U_0 - \gamma \sigma)$ — энергия активации реакции, U_0 — энергия связи; произведение $\gamma \sigma$ служит эквивалентом энергии деформации.

Соотношение энергий в модели С.Н. Журкова

Использование в модели С.Н. Журкова кинетического уравнения (1) подразумевает существование ансамбля

деформированных межатомных связей и ограничивает процесс моментом разрушения. В то же время разрушение сопровождается релаксацией остаточных напряжений во всем ансамбле связей после момента разрыва. Таким образом, термофлуктуационный разрыв деформированных связей по С.Н. Журкову сочетается с последующей релаксацией энергии, запасенной до разрыва. При этом разрыв и последующая релаксация энергии отличаются друг от друга знаком теплового эффекта и характеристическими временами. Термофлуктуационный разрыв — реакция эндотермическая, релаксация экзотермический процесс. Поэтому уравнение баланса энергии выглядит следующим образом (рис. 1, *a*):

$$A = Q_{\rm rel} + \sum N_i H'_i.$$
 (2)

В результате затраты работы A ансамбль межатомных связей растянут и разорван; на месте разрыва стабилизированы образовавшиеся свободные радикалы или низкокоординированные атомы с суммарной избыточной энергией $\sum N_i H'_i$ (H'_i — парциальная мольная энтальпия каждого из продуктов разрыва, N_i — доля дефектов данного типа). После разрыва энергия деформации межатомных связей в освободившихся от нагрузки фрагментах за отрезок времени τ_{rel} превращается в теплоту Q_{rel} . С освобождением Q_{rel} часто связаны вторичные реакции распада с выбросом низкомолекулярных продуктов [3–5].

4. Энергетические выходы механохимических процессов

Энергетический выход G механохимического процесса равен отношению количества молей продукта ΔN к количеству энергии, затраченной при его производстве, т.е. к дозе D,

$$G = \Delta N/D \,[\text{mol/J}]. \tag{3}$$

Рис. 1. Соотношения между затратами работы при создании структурных дефектов A_{MA} и энтальпией дефектов $\sum N_i H'_i(a)$ и между работой, затраченной при механохимическом синтезе A_{MCH} , и энтальпией механохимической реакции $\Delta H_{ch}(b)$.

Величина A = 1/G [J/mol], обратная выходу, характеризует работу, которая затрачена при образовании продуктов в механохимическом процессе (работу образования).

Представления об энергетическом выходе [6,7] справедливы при описании процессов образования точечных дефектов, дислокаций, межзеренных границ, межфазных поверхностей, а также структурных и химических превращений, сопровождающих деформацию и разрушение кристаллов и их смесей.

Диаграммы на рис. 1, *а*, *b* качественно поясняют особенности энергетики образования структурных дефектов и механохимических превращений. Механическая активация, цель которой состоит в создании структурных дефектов и (или) активных центров, всегда сопровождается экзотермическим процессом релаксации энергии — освобождением теплоты (рис. 1, *a*): $Q_{\rm rel} = A_{MA} - \sum N_i H'_i$.

В механохимической реакции работа A_{MCH} расходуется в процессах измельчения и деформационного перемешивания компонентов. Эти процессы завершаются синтезом соединения $(X_S + Y_S \rightarrow XY_S)$, и система переходит на уровень энергии ΔH_{ch} . При этом дополнительно выделяется теплота реакции синтеза ΔH_{ch} . Поэтому Q_{rel} в данном случае складывается (рис. 1, *b*) из затраченной энергии A_{MCH} и теплоты реакции ΔH_{ch} : $Q_{rel} = A_{MCH} + \Delta H_{ch}$. Величины *A* или *G* характеризуют тот или иной механизм превращений упругой энергии в энергию структурных дефектов или продуктов химических реакций.

Наиболее распространенным оборудованием для механической активации порошков и осуществления механохимических процессов являются различные энергонапряженные измельчители. Для того чтобы определить работу A_{MA} или A_{MCH} в процессах механической обработки порошков, выполнены систематические измерения [8] и расчеты [9,10] энергонапряженности (удельной мощности) I [W/g] механохимических реакторов разного типа. Методы определения энергонапряженности (калориметрический, метод тест-объектов и др.) описаны в [10,11]. Энергонапряженность механохимических реакторов составляет $10^{-1}-10^2$ W/g, а доза *D* механической энергии, передаваемой порошку, может достигать $D = It \sim 10^2 - 10^3$ kJ/g.

5. Работа образования структурных дефектов

5.1. Дислокационные процессы. Пластическую деформацию, развивающуюся по дислокационному механизму, можно представить с помощью модели, в которой продвижение вперед атомной конфигурации на один шаг (на параметр решетки) — результат перегрупнировки межатомных связей под действием напряжений сдвига σ_T . На каждом шаге затрачивается работа $\sigma_T V_0$ (V_0 — атомный объем) и величина деформации ε является функцией количества поглощенной энергии — дозы D: $\varepsilon = f(D)$. При низкой концентрации дислокаций взаимодействие между ними мало и все шаги равноценны ($\sigma_T = \text{const}$). Тогда энергетический карактеристикой акта перегруппировки будет энергетический выход G, равный $G = 1/\sigma V_0$.

Точно так же от дозы D зависят основные дислокационные процессы: размножение дислокаций, их аннигиляция, объединение в межзеренные границы, захват дислокациями атомов примеси и др.

а) Размножение дислокаций. Ожидаемое значение энергетического выхода размножения дислокаций можно оценить исходя из механизма Франка—Рида. Согласно этому механизму, встраиванию атома в линию дислокации предшествуют ее прогиб и натяжение между двумя стопорами. Натяжение отрезка дислокации облегчает встраивание атомов решетки в линию дислокации, а прогиб неизбежно сопровождается заметанием участка плоскости скольжения под образующейся дислокационной петлей.

При перемещении отрезка дислокации из положения A в положение A' на расстояние dR ее длина l увеличивается на dl (см., например, рис. 3–16 в [12]). При этом в дислокацию встраивается dl/b атомов (b — параметр решетки), а дислокационная петля в плоскости скольжения заметает площадку, на которой расположено $n_S = l dR/b^2$ узлов решетки. При встраивании атомов в линию дислокации ее энергия увеличивается на $W_b dl/b$ (W_b — энергия дислокации, отнесенная к расстоянию b) и затрачивается работа, равная $n_S \sigma_T V_0$.

Энергетический выход размножения дислокаций G_D равен отношению числа встроенных атомов к затраченной при этом работе

$$G_D = 1/\{W_b + \sigma V_0(R/b)\}.$$
 (4)

Можно показать, что максимальное значение энергетического выхода G_D^{\max} соответствует ситуации, когда оба слагаемых в знаменателе уравнения (4) равны по величине. Тодга $G_D^{\max} \sim 1 \text{ mol/MJ}$. Реальный выход G_D значительно меньше G_D^{max} , его оценка проведена далее на основании результатов работы Гилмана [13]. Согласно [13], при пластическом течении скорость образования дислокаций dN_D/dt , как и скорость деформации $d\varepsilon/dt$, прямо пропорциональна концентрации дислокаций N_D :

$$dN_D/dt \approx M v_D N_D, \tag{5a}$$

$$d\varepsilon/dt \approx bv_D N_D.$$
 (5b)

Здесь v_D — скорость скольжения дислокаций [m/s], M — коэффициент размножения дислокаций [m⁻²]. Значения коэффициента M для ряда кристаллов представлены в табл. 1.

Из соотношений (5a) и (5b) следует, что энергетический выход размножения дислокаций G_D равен

$$G_D = (dN_D/dt)/\sigma_T(d\varepsilon/dt)$$
 или $G_D = M/(b\sigma_T).$ (6)

Оценки, выполненные по соотношению (6) на основании литературных данных о величине M (табл. 1), показывают, что значения G_D для ряда металлов (Al, Cu, Fe, Ni) находятся в пределах 0.005-0.1 mol/MJ. Как следует из модели Гилмана, основной вклад в величину работы образования дислокаций A_D обусловлен потерями на внутреннее трение, которые неизбежны при формировании образующейся дислокационной структуры.

b) Образование межзеренных границ. В пластичных металлах межзеренные границы обычно формируются по механизму полигонизации. Согласно этой модели, средний пробег дислокаций до объединения в границы соизмерим с размерами L образующихся кристаллических блоков (например, с размерами областей когерентного рассеяния L_{RCS}). Тогда работу образования межзеренных границ A_B можно оценить по соотношению $A_B = L_{RCS} N_S \sigma_T V_0$, где N_S — поверхностная плотность атомов на межзеренных границах. По оценкам [14], которые сделаны на основании этой модели, работа образования межзеренных границ

Рис. 2. Рост площади S_B межзеренных границ железа в процессе механической обработки Fe и смесей порошков Fe /X = 80/20 (по данным [21]).

Таблица 1. Коэффициент размножения дислокаций *М* по Гилману [13]

Кристалл	$M, 10^{-2} \mathrm{m}^{-2}$
Ta	1000
Ag Fe	230 30-250
Al	80
Cu Ni	50 8
Ge	1
KCl	0.5

Таблица 2. Работа, затраченная на образование межзеренных границ металлов при механической обработке порошков

_

Металл	A_B , J/m ²
Al	120
Fe	230
Ni	220
Cu	310
Ag	530
W	710

должна составлять $10-10^2$ J/m², т.е. A_B в десятки-сотни раз выше энергии границ.

Измерения величины A_B для различных металлов (рис. 2 и табл. 2) были выполнены в режиме механической обработки порошков. Площадь поверхности образующихся границ оценивали исходя из результатов анализа формы линий рентгеновской дифракции с расчетами размеров областей когерентного рассеяния ($S_B \sim 1/L_{\rm RCS}$). Величина A_B (соответствующая наклону прямых на рис. 2) сохраняется постоянной при снижении размеров кристаллических блоков в металлах до десятков нанометров. Для большинства металлов значения A_B находятся в пределах 10^2-10^3 J/m², т.е. по порядку величины соответствуют ожидаемым значениям.

Как правило, энергетический выход дислокационных процессов G_0 слабо зависит от условий механической обработки — температуры и скорости нагружения (мощности дозы).

5.1. Образование поверхности

 а) Раскалывание кристаллов. Рост трещины при расколе хрупких кристаллов можно рассматривать как модель образования новой поверхности со сравнительно небольшими затратами энергии.

Так, при записи соотношения Гриффитса часто в первом приближении принимают, что при расширении существующей в объеме кристалла полости работа δA_s , затраченная при увеличении поверхности, равна прира-

щению поверхностной энергии

$$\delta A_{S} = \gamma \delta S. \tag{7}$$

Здесь *S* — площадь поверхности полости, *γ* — поверхности в энергия.

Однако соотношение (7) справедливо лишь в термодинамически равновесных условиях. В реальных условиях разрушения рост трещины сопровождается потерями энергии в побочных процессах: пластической деформации приповерхностного слоя (A_{SL}) , электризации стенок трещины (A_E) . Кроме того, расходящиеся половинки кристалла приобретают кинетическую энергию (A_K) , а на практике трудно избежать трения осколков друг о друга (A_F) . Поэтому в действительности работа A_S существенно превышает поверхностную энергию γ : $A_S = \gamma + A_K + A_{SL} + A_E + A_F$.

Для расчета отдельных составляющих используют различные модели. Кинетическую энергию расходящихся половинок кристалла рассчитывают по уравнениям теоретической механики, основываясь на результатах измерений скорости прорастания трещины и изменений геометрии образца. При оценке роли пластической деформации исходят из модели взаимодействия растущей трещины с дислокациями на ее пути: зона напряжений сжатия, бегущая впереди носка трещины, достигнув дислокации, натянутой поперек ее движения, не разрезает ее, как нож разрезал бы нитку, а увлекает за собой, вытягивая дислокацию вдоль образующихся стенок на небольшой глубине [15]. После прохождения трещины упругие напряжения в изогнутых половинках расколотого кристалла выталкивают дислокации наружу. Количество дислокаций определяют, подсчитывая число атомных ступенек на зеркальной поверхности скола.

Дислокации в кристаллах электрически заряжены. При переходе из приповерхностного слоя на поверхность они выносят свой заряд наружу. Раскол редко бывает строго симметричным: более тонкая часть изгибается сильнее широкой. Соответственно в тонкой части большее число дислокаций выносит на поверхность свой электрический заряд [16]. Разность плотности зарядов на противоположных стенках трещины может достигать десятков единиц CGSE/cm² (до 10¹⁰ элементарных зарядов на 1 cm²). Такую растущую трещину можно остановить электрическим полем [17].

Работу по разведению заряженных стенок трещины A_E рассчитывают по тем же уравнениям, что и работу по разведению обкладок конденсатора [18]. При расколе в вакууме максимальный заряд сохраняется на всей длине и электростатическая составляющая работы разрушения A_E максимальна. Заряд столь велик, что вырывает с поверхности электроны, которые разгоняются в поле расходящейся трещины до десятков keV (эффект Дерягина [18]).

Вклады различных каналов поглощения энергии в процессе роста трещины в кристалле LiF сопоставлены

Таблица 3. Соотношение между основными каналами поглощения энергии при росте трещины в кристалле LiF (в единицах A_i/γ) [7]

γ	A_K	A_{SL}	A_E
1	3-5	> 10	2

Таблица 4. Работа, затраченная на образование поверхности при измельчении (измерения методом Брунауера-Эмметта-Теллера

Вещество	A_S , J/m ²
BN	6
Графит	30-60
Nb_2O_5	30
SiO ₂	100
Si	900

в табл. 3, составленной на основании обзора [7]. Затраты работы по каждому из каналов отнесены к величине поверхностной энергии кристалла LiF. Как видно, даже без учета потерь на трение работа образования поверхности превышает поверхностную энергию в 10–20 раз. Величина A_s зависит от скорости роста трещины и содержания дефектов в кристалле. Природе побочных процессов посвящено значительное число работ (см., например, обзор [16]).

b) Измельчение. Высокую величину удельной поверхности в десятки и сотни m^2/g , которой формально соответствуют размеры частиц $10^{-8}-10^{-7}$ m, создают при измельчении порошков слоистых и хрупких материалов.

Удельная поверхность графита при его измельчении увеличивается прямо пропорционально дозе вплоть до значений ~ $350-400 \text{ m}^2$ /g. Работа образования поверхности графита сохраняется постоянной в диапазоне мощностей (энергонапряженности) мельницы от 0.35 до 80 W/g (рис. 2 в [10]). Следовательно, величина A_S является энергетическим параметром образования поверхности материала.

Величины A_S для ряда слоистых и хрупких материалов сопоставлены в табл. 4. Видно, что в различных веществах величина A_S изменяется более чем на два порядка. Легче всего происходит образование поверхности в слоистых материалах (нитрид бора и графит). Для диоксида кремния величина A_S достигает 100 J/m². Наиболее трудно образуется поверхность в кремнии [19].

Таким образом, во всех рассмотренных выше примерах работа образования структурных дефектов при механических воздействиях на кристаллы на несколько порядков величины превышает парциальную мольную энтальпию дефектов и основной вклад в величины *G* и *A* вносят процессы внешнего или внутреннего трения.

Деформационное перемешивание и механохимический синтез

Деформационное перемешивание и механохимический синтез осуществляют при совместной механической обработке нескольких компонентов реакционной смеси, сплава или композиционного материала. В этом процессе измельчение кристаллической структуры компонентов, совмещенное с их перемешиванием, завершается релаксацией запасенной энергии в актах формирования кристаллической структуры продуктов.

Для описания деформационного перемешивания и (или) синтеза в аппаратах типа мельниц с шарами, где материал испытывает многократные импульсные воздействия ($\sim 10^{-5}$ s), используют подход, основанный на анализе баланса энергии. Шар при неупругом соударении за время контакта передает порошку дозу энергии D^* . В результате в смеси порошков образуются продукты синтеза и выделяется энергия химической реакции, равная произведению $GS\Delta HD^*$. Здесь G — энергетический выход реакции, отнесенный к единице площади контакта [(mol/MJ)/(m²/g)], S — удельная поверхность контакта [m²/g], ΔH — энтальпия превращения [J/mol]. Следовательно, результирующее выражение для энергии релаксации Q_{rel} принимает вид

$$Q_{\rm rel} \approx (1 + GS\Delta H)D^*.$$
 (8)

Соотношение (8) устанавливает взаимосвязь энергии релаксации $Q_{\rm rel}$ с интенсивностями измельчения (работа образования поверхности $S \sim 1/A$) и перемешивания (величина G), а также с энтальпией реакции ΔH и энергией удара D^* . Уровень энергии релаксации $Q_{\rm rel}$ влияет на кинетику образования продукта, его природу и химическое строение. Ярким примером являются взрывные деформационные процессы [20]. Для перехода в режим самораспространяющегося высокотемпературного синтеза необходимо, чтобы адиабатическая температура в акте релаксации превысила температуру плавления одного из компонентов смеси.

В качестве примера "холодного" механического сплавления далее рассмотрено атомное перемешивание в двухкомпонетных смесях ОЦК-металлов 80 Fe + 20X, где X = Sn, Ti, Zr, Nb, Ta, Mo, W [21,22]. Во всех смесях регистрировались рост площади межзеренных границ Fe в результате измельчения, расходование фазы X и появление атомов X в фазе Fe при перемешивании. При степени превращения до 0.5–0.75 энергетические характеристики измельчения A_S (Fe) и перемешивания A(-X) и A(+X) постоянны (рис. 2 и 3), а работа A(-X), характеризующая растворение фазы X в α -Fe, прямо пропорциональна пределу текучести металла X. Эта закономерность соблюдается во всем ряду металлов от Sn до W (рис. 4).

Судьба атомов растворенного компонента X различна. Атомы Nb, Ta, Mo и W появляются в твердом растворе строго синхронно с исчезновением из исходной фазы X

Рис. 3. Деформационное перемешивание в смесях Fe/X (по данным [21]). X = Zr (*a*) и W (*b*). *1* — расходование компонента X, 2 — появление атомов X в составе продуктов.

Рис. 4. Взаимосвязь между работой A(-X), затраченной при деформационном перемешивании смесей Fe/X, и пределом текучести σ_Y компонента X (по данным [22]).

(рис. 3, *b*); они образуют кристаллические (Mo, W) или аморфные (Nb, Ta) растворы в α -Fe. Предел текучести (σ_Y) Nb, Ta, Mo и W больше, чем σ_Y Fe, и можно полагать, что деформационное перемешивание в этой группе металлов осуществляется по механизму замещения атомов решетки железа атомами *X*. Атомы Sn, Ti, Zr покидают свою фазу в форме фрагментов (кластеров), не наблюдаемых методом РФА (т.е. $L_{\rm RCS} < 1-2$ nm), и со значительной задержкой по дозе появляются в формирующейся структуре кристаллических или аморфных растворов (рис. 3, *a*). Таким образом, в ряду смесей Fe + X механизм деформационного перемешивания — атомное растворение для тугоплавких металлов или фрагментация для более мягких (Sn, Ti, Zr) — зависит от соотношения пределов текучести компонентов.

Аналогично в реакциях механохимического синтеза по схеме $X_S + Y_S \rightarrow XY_S$ продукты образуются либо сразу при контактах реагентов (и тогда $G(XY) \sim \delta S_{XY}/\delta D$; например, в реакции Nb₂O₅ + PbO \rightarrow Pb₂Nb₂O₇ [23]), либо в процессах массопереноса в зонах контакта. Второй случай более распространен, при этом энергетический выход образования продуктов $G(XY) = \delta \alpha / \delta D$ (α — степень превращения) прямо пропорционален площади межфазных границ $S_{X/Y}$

$$\delta \alpha / \delta D \sim S_{X/Y}.$$
 (9)

7. Релаксационные эффекты

Схема на рис. 5 иллюстрирует кинетику превращений энергии при импульсном нагружении реагентов или их смесей. Например, неупругое соударение шаров длится всего $\tau_{col} \approx 10^{-5}$ s, за этот промежуток времени кинетическая энергия шара передается порошку реагентов. Порошок, получив дозу энергии D^* , переходит в неравновесное состояние, в котором внешние напряжения уже не действуют, а внутренние (остаточные) напряжения релаксируют, стремясь перевести вещество в равновесное состояние. Опыт показывает, что время релаксации τ_{rel} обычно значительно больше продолжительности соударения шара с веществом и что существует широкий спектр времен релаксации.

Малые времена релаксации фиксируют, анализируя реакционную способность твердых тел при взаимодействии с газами непосредственно в моменты разрушения. Оказалось, что выход гетерогенных реакций водорода и кислорода с диоксидом кремния [24], кислорода с кремнием [25] и оксида углерода с цирконием [26] в процессе механической обработки в десятки раз выше, чем после ее прекращения. Для измерения характерных времен релаксации по потере химической активности поверхности можно использовать зависимость выхода гетерогенной реакции $X_S + Y_G$ от давления газа. При высоком давлении выход максимален, так как частота соударений молекул с поверхностью велика и все молекулы при столкновениях с поверхностью вовлекаются в реакцию. При низком давлении, наоборот, выход реакции мал, так как свежеобразованная поверхность в результате релаксации теряет свою активность до встречи с молекулами газа. Недостаток этого метода состоит в неопределенности времен релаксации из-за отсутствия данных о величине коэффициента прилипания.

Рис. 5. Схема превращений энергии при ударе шара по слою порошка: неупругое взаимодействие шара с порошком ($\tau_{\rm col} \sim 10^{-5}$ s), последующая релаксация напряжений ($\tau_{\rm rel}$). $\tau_{\rm rel} \gg \tau_{\rm col}$. Релаксация напряжений характеризуется широким спектром времен.

Медленная релаксация и постепенное накопление остаточных напряжений были обнаружены с помощью метода прерывистой механической обработки. В этих экспериментах механическую обработку периодически прекращали на определенный промежуток времени, а после "отдыха" включали вновь. В реакциях квазивзрывного механохимического синтеза [20] периодический отдых продолжительносью в 10–30 min привел к существенному увеличению индукционного периода. Аналогичные эксперименты с перерывами для "отдыха" в несколько часов [27] подтвердили факт длительной релаксации в системе Fe+C. Эксперименты по замораживанию и последующей термической релаксации состояний с избыточной энергией межмолекулярного взаимодействия были выполнены на полимерах [28].

Таким образом, факт существования широкого спектра времен релаксации экспериментально обоснован, однако сведений о границах и механизмах этой релаксации пока недостаточно.

8. Заключение

В рассмотренном цикле работ развит и количественно обоснован анализ энергетического баланса при структурных и механохимических превращениях в условиях пластической деформации и разрушении твердых тел.

У явлений деформации и разрушения несколько "хозяев". Для кинетической теории прочности, которая создана школой С.Н. Журкова, важны сведения о величинах предразрывных деформаций и напряжений, о состоянии кристаллической структуры к моменту разрыва, который и фиксирует уравнение (1). Для механохимии важны химическое строение и реакционная способность деформированных структур, наличие низкокоординированных атомов и свободных радикалов, осколков молекул и ионов, а также возбужденных состояний, которые являются носителями избыточной энергии $Q_{\rm rel}$, освобождающейся после разрыва.

Таким образом, момент разрыва межатомных связей является как критической точкой на диаграммах механических свойств, так и сигналом к сбросу запасенной энергии и "скачку" реакционной способности. В школе С.Н. Журкова процессы, разделенные моментом разрыва, рассматривались совместно, но в последние годы эта тенденция не всегда соблюдается: теория прочности и механохимия постепенно отдаляются друг от друга в потоках практических приложений.

В настоящей работе сделана попытка возврата к совместному рассмотрению разрушения и реакционной способности на основе анализа энергетических аспектов этих процессов.

Список литературы

- [1] С.Н. Журков, Б.Н. Нарзулаев. ЖТФ 23, 1677 (1953).
- [2] В.Р. Регель, А.И. Слуцкер, Э.Е. Томашевский. Кинетическая природа прочности твердых тел. Наука, М. (1974). 560 с.
- [3] В.Р. Регель, Т.М. Муинов, О.Ф. Поздняков. ФТТ **4**, 2468 (1962).
- [4] В.А. Радциг, В.С. Пудов, П.Ю. Бутягин. Высокомолекуляр. соединения Б 9, 6, 414 (1967).
- [5] N.S. Enikolopjan, L.S. Zarxin, E.V. Prut. J. Appl. Pol. Sci. 30, 2291 (1985).
- [6] P.Yu. Butyagin, I.K. Pavlychev. Reactiv, Sol. 1, 361 (1986).
- [7] P.Yu. Butyagin. Chem. Rev. 23, 2, 89 (1998).
- [8] А.Б. Борунова, Ю.В. Жерновенкова, А.Н. Стрелецкий, В.К. Портной. Обработка дисперсных материалов и сред. Периодич. сб. Одесса (1999). В. 9. С. 158.
- [9] N. Burgio, A. Iasonna, M. Magini, S. Martelli, F. Padella. Nuovo Cimento D 13, 459 (1991).
- [10] A.N. Streletskii. Proc. 2nd Int Conf. on Structural Applications of Mechanical Alloying / Ed. J.J. deBarbadillo, F.H. Froes, R. Swartz. Vancouver (1993). P. 51.
- [11] П.Ю. Бутягин, А.Р. Кузнецов, И.К. Павлычев. ПТЭ 6, 771 (1986).
- [12] П.Ю. Бутягин. Химическая физика твердого состояния. Диффузия и реакционная способность. МФТИ, М. (1991). С. 95.
- [13] J.J. Gilman. J. Appl. Phys. 31, 2208 (1960).
- [14] П.Ю. Бутягин, Ю.В. Жерновенкова, И.В. Повстугар. Коллоид. журн. 65, 2, 163 (2003).
- [15] S.I. Burns, W.W. Webb. J. Appl. Phys. 41, 2078 (1970).
- [16] M.I. Molotskii. Sov. Sci. Rev. B. Chem. 13, 1 (1989).
- [17] В.М. Финкель, Ю.И. Тялин, Ю.И. Головин, Л.Н. Муратора, М.В. Горшенева. ФТТ 21, 1943 (1979).
- [18] Б.В. Дерягин, Н.А. Кротова, В.П. Смилга. Адгезия твердых тел. Наука, М. (1973). 279 с.
- [19] А.Н. Стрелецкий, А.В. Леонов, П.Ю. Бутягин. Коллоид. журн. 63, 5, 690 (2001).
- [20] П.Ю. Бутягин, К.Б. Шелимов. ДАН СССР **316**, *6*, 1439 (1991).
- [21] I.V. Povstugar, P.Yu. Butyagin. J. Mater. Sci. 39, 5461 (2004).
- [22] П.Ю. Бутягин, И.В. Повстугар. ДФН 398, 5, 1 (2004).

- [23] А.Н. Стрелецкий, А.Б. Борунова, П.А. Ширяев, Д.П. Шашкин. ЖФХ 69, 5, 980 (1995).
- [24] А.В. Быстриков, И.В. Берестецкая, А.Н. Стрелецкий, П.Ю. Бутягин. Кинетика и катализ 21, 3, 765 (1980).
- [25] П.Ю. Бутягин, А.Н. Стрелецкий, И.В. Берестецкая, А.В. Борунова. Коллоид. журн. 63, 5, 699 (2001).
- [26] А.Н. Стрелецкий, П.Ю. Бутягин, А.В. Леонов. Коллоид. журн. 58, 2, 248 (1996).
- [27] P. Matteazzi, F. Miani, G. LeGaer. J. Hard. Mater. 2, 3/4, 171 (1991).
- [28] P. Butyagin. Sov. Sci. Rev. B. Chem. 14, 1 (1989).