Оптические спектры высокосимметричных изомеров $C_{60}(CH_3-r_6-H)_n$ при n = 3, 6

© С.С. Моливер, Ю.Ф. Бирюлин*

Ульяновский государственный университет, 432700 Ульяновск, Россия * Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: biryulin@nano.ioffe.rssi.ru, moliver@sv.uven.ru

(Поступила в Редакцию 19 октября 2000 г.)

Ранее нами были найдены энергии образования и электронные структуры молекулы фуллерена C_{60} и ее метилированных и гидрированных химических производных с насыщенными связями r_6 вида $C_{60}(CH_3 - r_6 - H)_n$ при n от 1 до 6. На основе самосогласованных молекулярных орбиталей для каждой молекулы методом ΔSCF найдены энергии синглетных и триплетных возбуждений. Проведено сравнение нейденной электронной структуры молекулы фуллерена с экспериментальными данными и другими теоретическими вычислениями. Показано, что использованная полуэмпирическая квантово-химическая методика объясняет экспериментальные спектры фотолюминесценции фуллеренсодержащих звездообразных полистиролов.

Частичное или полное снятие дипольного запрета на переходы в изомерах, образующихся при химическом насыщении двойных связей, позволяет спектроскопическими методами проследить за изменениями электронной структуры $p\pi$ -оболочки молекулы фуллерена. Описаны особенности оптической спектроскопии первых возбужденных синглетных состояний (спектров поглощения, люминесценции и возбуждения люминесценции), а также фосфоресценции первого спин-триплетного состояния.

Работа выполнена в рамках Межотраслевой научно-технической программы России "Фуллерены и атомные кластеры" по проекту 98076 "Полимер-2", а также поддержана Российским фондом фундаментальных исследований (проект № 98-02-03327).

Рассмотрим химическую модификацию молекулы фуллерена, при которой происходит частичное насыщение ковалентной связи r_6 , разграничивающей две гексагональные грани фуллерена. Соответствующие производные с n насыщенными связями обозначим $C_{60}(R_1-r_6-R_2)_n$. Такая модификация происходит, например, при метилировании фуллерена, когда радикалом является СН₃, или при гидрировании, когда радикал — атом водорода. Химический синтез фуллеренсодержащих звездообразных полистиролов [1] дает пример смешанного насыщения вида $C_{60}(CH_3-r_6-H)_n$, где метильная группа изображает полимерную цепочку, присоединенную к фуллерену.

Модель сильной связи [2] и квантово-химический расчет [3] показывают, что изменение электронной структуры $p\pi$ -оболочки фуллерена при такой химической модификации описывается влиянием ближайшего мономерного звена полимера, например метильной группы. Эти теоретические выводы подтверждаются спектрами фотолюминесценции пленок и растворов фуллеренсодержащих звездообразных полистиролов с переменным числом *n* присоединенных ковалентно лучей полимера [2,4].

Ранее нами были найдены энергии образования и электронные структуры молекулы фуллерена C_{60} и ее метилированных и гидрированных химических производных с насыщенными связями r_6 вида $C_{60}(CH_3 - r_6 - H)_n$ при n от 1 до 6 [3]. Расчеты проводились с помощью квантово-химической программы с полуэмпирической параметризацией (INDO) в приближении RHF (ограни-

ченный метод Хартри-Фока-Рутана), поскольку все указанные молекулы имеют замкнутую электронную оболочку (используется стандартная квантово-химическая терминология [5]). Выяснилось, в частности, что высокосимметричные изомеры фуллерена, насыщенные связи которых располагаются как можно более равномерно по поверхности фуллерена, имеют большую теплоту образования, чем инзкосимметричные, и, следовательно, должны синтезироваться в большей концентрации. На основе самосогласованных молекулярных орбиталей (MO) для каждой молекулы методом ΔSCF были найдены энергии синглетных возбуждений. На основании этих расчетов можно представить форму оптических спектров реальной смеси изомеров, образующейся на выходе реакции химического синтеза, и предсказать, как тип расположения насыщенных связей проявляется в поляризационных зависимостях.

Цель данной работы состояла в следующем:

 дополнить спектр синглетных возбуждений [3] триплетными как для молекулы С₆₀, так и для ее изомеров с насыщенными связями;

 провести сравнение найденной электронной структуры молекулы фуллерена с экспериментальными данными и другими теоретическими вычислениями, чтобы

 выяснить, насколько адекватна используемая нами полуэмпирическая квантово-химическая методика задаче объяснения экспериментальных спектров фотолюминесценции фуллеренсодержащих звездообразных полистиролов [2].

Возбужденные состояния молекулы С₆₀

На рисунке наряду с результатами расчета нижних синглетных возбуждений [3] показаны новые данные по нижним триплетным возбуждениям молекулы фуллерена и ее наиболее симметричных изомеров с тремя и шестью насыщенными связями. Метод расчета ΔSCF описан в Приложении, размерность разложения была от 591 до 597 детерминантов, в зависимости от неприводимого представления искомого терма. Возбуждения всех типов с энергиями бо́лышими, чем приведенные на рисунке, образуют почти сплошной спектр, начинающийся от верхних показанных уровней в каждой полосе.

Интерпретация экспериментальных данных по фотолюминесценции полимеров с ковалентно присоединенным фуллереном [2] возможна при помощи данных правой половины рисунка, но при условии правильного соотнесения с экспериментом рассчитанного спектра молекулы фуллерена (в левой половине рисунка).

Результаты расчетов по методу ΔSCF возбужденных состояний молекулы фуллерена и ее производных $C_{60}(CH_3 - r_6 - H)_n$. Условные обозначения возбужденных состояний: квадраты синглетные, треугольники — триплетные, темные символы четные, светлые — нечетные. Вырождение (1-5 для фуллерена и 1-2 для его производных) указано количеством символов на одном уровне. По цифрам 1 и 2 вблизи орбитальных триплетов молекулы можно отличить представления T_{1p} и T_{2p} (p = g, *и* — четность). Спектры производных фуллерена упорядочены по энергии образования [3], слева в каждом ряду с данным *n* показан спектр основного изомера. Спектры изомеров помечены их группой симметрии и типом расположения насыщенных связей [3]. Звездочками показаны экспериментальные данные. Сплошные стрелки показывают дипольно-разрешенные переходы, штриховые — дипольно-запрещенные. Волнистые стрелки показывают переходы, запрещенные по спину.

В целом спектр возбуждений согласуется со сложившимися к настоящему времени представлениями о молекуле C_{60} (ссылки даются не обязательно на пионерские работы, а на более свежие и исчерпывающие или обзорные).

1) Имеется низколежащее синглетное состояние S_1 , на рисунке это ${}^1T_{2g} = 2.220 \text{ eV}$ [3], соответствующие ему переходы показаны штриховыми стрелками. Отметка S_1 показывает уровень 0–0, от которого отсчитываются наблюдаемые в оптических спектрах электрон-колебательные линии. В экспериментах дипольно-запрещенные переходы между S_1 и основным состоянием S_0 фиксируются многими способами, например:

а) в оптическом поглощении и люминесценции растворов [6–9], в том числе при замораживании до гелиевых температур [10]; $S_1 \approx 1.88 \text{ eV}$ получено по правилу зеркальной симметрии спектров — нижняя из двух отметок на рисунке;

b) в спектрах фотовозбужденной люминесценции (флуоресценции) из криокристаллических матриц Ne и Ar [11] и в спектрах двухфотонной ионизации в газовой фазе [12]; $S_1 \approx 1.94$ eV получено экстраполяцией линейчатого спектра с помощью квантово-химических расчетов сил осцилляторов при электрон-колебательных переходах — верхняя из двух отметок на рисунке;

с) в спектрах потерь энергии протонов H^+ и ионов H_2^+ [13] имеются максимумы 2.26 и 1.9 eV, которые попадают в диапазон оптического поглощения на дипольно-запрещенных синглетных переходах.

2) Дипольно-разрешенный оптический электронный переход $S_0 \rightarrow S_n$ (для группы симметрии \mathbf{I}_h это ${}^{1}A_{g} \rightarrow {}^{1}T_{1u}$) отделен от дипольно-запрещенных. На рисунке разрешенный переход показан сплошной стрелкой из основного состояния в рассчитанное нами состояние ${}^{1}T_{1u} = 2.764 \,\mathrm{eV}$ [3]. В эксперименте этот переход связывается с узкой линией в спектре оптического поглощения, положение которой мало подвержено влиянию окружения молекулы, будь то молекулы растворителя или кристалла. Для раствора C₆₀ в толуоле это линия 3.05 eV (407 nm) [14], отмеченная на рисунке как S_n . В спектре оптического поглощения она отделена от полосы поглощения на электрон-колебательных переходах широким провалом, который можно связать с отсутствием какихлибо синглетных решений в диапазоне 2.220-2.714 eV на рисунке.

В спектре потерь энергии протонов H⁺ [13] дипольноразрешенному переходу отвечает максимум 2.98 eV. То что он не такой острый, как в оптике (хотя авторы отмечают, что он самый острый из всех пиков рассеяния), можно объяснить неселективностью метода по симметрии: из рисунка видно, что, согласно нашему расчету, около ${}^{1}T_{1u}$ имеются близкие по энергии синглетные состояния ${}^{1}T_{1g}$, ${}^{1}G_{g}$, ${}^{1}T_{2u}$ и ${}^{1}G_{u}$.

3) Триплетные возбуждения молекулы проявляются в кинетике люминесценции синглетного возбужденного состояния S_1 , а также, возможно, в спектрах потерь энергии ионами H₂⁺ [13], когда возможна передача спина от электронов фуллерена электрону рассеиваемого иона. Анализ кинетики люминесценции был выполнен для модели с одним триплетным состоянием T_1 ниже S_1 и привел к величине синглет-триплетной энергетической щели $S_1 - T_1 = 35 \pm 2 \text{ kJ} \cdot \text{mol}^{-1} = 0.36 \pm 0.02 \text{ eV}$ [6] (на рисунке две из трех отметок T_1 получены вычитанием этой экспериментальной величины из S₁ — верхняя и нижняя). Согласно нашему расчету, имеется не одно, а четыре триплетных состояния, в которые может перетечь синглетное возбуждение S₁ в результате внутренней конверсии: два из них — низколежащие ${}^{3}T_{2g} = 1.414 \,\mathrm{eV}$ и ${}^{3}G_{\mu} = 1.750 \,\text{eV}$, с ними можно было бы связать низкоэнергетическое крыло полосы люминесценции. На рисунке соответствующие переходы показаны волнистыми штриховыми стрелками.

Люминесценция триплетного состояния (фосфоресценция) наблюдалась только при гелиевой температуре [10]. Для ее условия необходимо увеличить спин-орбитальное взаимодействие, разрешающее переход, что достигается добавлением в раствор веществ с тяжелыми атомами (в цитируемой работе использован этилиодид C_2H_5I). На рисунке средняя отметка $T_1 = 12531 \,\mathrm{cm}^{-1} \approx 1.55 \,\mathrm{eV}$ — экспериментальное положение максимума фосфоресценции [10].

Заметим, что терм ${}^{3}T_{2g}$ является самым низколежащим возбуждением молекулы C₆₀ согласно всем расчетам электронной структуры, в то время как относительно низколежащих синглетных состояний имеется существенное расхождение, которое будет рассмотрено далее. Два триплетных состояния, ${}^{3}T_{1u}$ и ${}^{3}T_{1g}$, согласно расчету, близки по энергии к первому синглетному возбуждению; с их наличием можно было бы связать чрезвычайно эффективную внутреннюю конверсию молекулы C₆₀ после оптического возбуждения $S_0 \rightarrow S_1$ [14]. На рисунке этот гипотетический переход с малой передачей энергии, обусловленный спин-орбитальным взаимодействием, показан волнистой горизонтальной стрелкой, после него может происходить быстрое понижение энергии по триплетным уровням.

4) Оптическое поглощение на триплетных переходах $T_1 \rightarrow T_m$ в полосе с максимумом 740 nm (1.68 eV) наблюдается при наложении возбуждения $S_0 \rightarrow S_1$ [15,16]. На основе таких экспериментов удалось, в частности, связать время жизни триплетного состояния T₁ при разных температурах с плотностью колебательных мод молекулы как в газовой, так и в конденсированных средах [17]. Если принять, что максимуму соответствует дипольно-разрешенный переход, то это ${}^{3}T_{2g} \rightarrow {}^{3}G_{u}, {}^{3}H_{u}$. Согласно нашему расчету, низколежащие состояния ${}^{3}G_{u} = 1.750 \text{ eV}$ и ${}^{3}H_{u} = 2.510 \text{ eV}$ не подходят по энергии на роль конечного состояния Т_т в экспериментальном спектре. Возможно, соответствующее им ИК-излучение не регистрируется при комнатной температуре в растворах, либо матричные элементы этих дипольных переходов малы. Следующее из возбуждений, дипольно связанных с основным триплетных, ${}^{3}G_{u}(2) = 3.026 \, \text{eV}$ (самое высокое из триплетных возбуждений на рисунке), уже можно сопоставить по энергии экспериментально наблюдаемому T_m , что и показано на рисунке сплошной стрелкой.

Обращаясь к спектру рассеяния ионов H_2^+ [13], находим, что, вероятнее всего, T_m содержится в полосе с максимумом 3.2 eV: только для нее $T_1 \approx 3.2 - 1.68 = 1.52$ eV (≈ 820 nm) оказывается в указанных выше диапазонах флуоресценции и фосфоресценции. Конечно, это весьма грубая оценка положения основного триплетного состояния, поскольку спектры рассеяния [13] приведены в крупном масштабе, однако сам метод является существенным дополнением к оптическим экспериментам, будучи селективным по спину и неселективным по дипольному моменту возбуждений.

5) Оптическое возбуждение четных синглетных состояний $S_1 \to S_m$ наблюдается в полосе поглощения с максимумом при 910 nm (1.36 eV, отсчитано на рисунке от S_1) [15], сплошной стрелкой показан дипольноразрешенный переход ${}^1T_{2g} \to {}^1G_u(2)$ между соответствующими рассчитанными состояниями.

Таким образом, проведенных квантово-химический расчет удовлетворительно описывает всю совокупность экспериментальных данных о возбужденных состояниях молекулы C_{60} : отклонение экспериментальных отметок от рассчитанных значений составляет $\pm (0.1-0.3)$ eV, оно показано скобками слева от оси энергии на рисунке. Погрешность связана с необходимостью ограничить по размерности метод ΔSCF , а также с неучетом электронной корреляции в энергии и волновой функции основного состояния в приближении Хартри–Фока [18].

Единственное крупное расхождение с некоторыми из теоретических методов касается положения четных синглетных состояний ${}^{1}T_{1g}$ и ${}^{1}G_{g}$ по отношению к первому синглетному возбуждению $S_1 = {}^1T_{2g}$: щель между ними найдена нами равной $S_2 - S_1 \approx 0.5\,\mathrm{eV}$. Основной вклад во все четные состояния вносят переходы между НОМО и LUMO $h_u \rightarrow t_{1u}$, уже в рамках такой пятнадцатимерной задачи ΔSCF щель оказывается около 0.2 eV. Это означает, что расхождение результатов полуэмпирических вычислений $S_2 \rightarrow S_1$, скорее всего, обусловлено вкладом межэлектронных интегралов определенного вида [5], которые хотя и незначительно влияют на электронную структуры основного состояния, но оказываются существенными в приближении *ΔSCF*. Параметризация данной работы, INDO (частичное пренебрежение дифференциальным перекрыванием), учитывает больше типов двухцентровых межэлектронных интегралов, и поэтому в указанном смысле она предпочтительнее, чем CNDO/S (полное пренебрежение дифференциальным перекрыванием), с испльзованием которой и было получено малое значение $S_2 - S_1 \approx 50 \, {\rm cm}^{-1}$ [11]. Ввиду погрешности квантовой химии нельзя доверять тому, что уровни разной симметрии оказались близкими, не подтверждается это малое значение и расчетами, основанными на других параметризациях [19]. Тем не менее модель с тремя близкими возбужденными синглетными состояниями считается верной [19,20] на том основании, что с ее помощью удалось количественно объяснить большое число электрон-колебательных линий в оптических спектрах молекул фуллерена в криокристаллических матрицах [11,12].

С одной стороны, количественное моделирование спектров [11] опирается на квантово-химическую оценку сил осцилляторов для различных синглетных возбуждений, и хорошее согласие с экспериментом свидетельствует в пользу расчетного метода. С другой стороны, в моделировании велика роль эмпирических факторов: в расчет закладывается большое число близких частот колебаний, известных из эксперимента, что не всегда позволяет строго индентифицировать тип колебания; формы спектров получены после подбора "весов излучающих состояний" ${}^{1}T_{2g}$, ${}^{1}T_{1g}$ и ${}^{1}G_{g}$, что допускает и другие возможности, например расщепление электронного терма ${}^{1}T_{2g}$ либо за счет поля криокристаллической матрицы (не случайно веса оказались разными для матриц Ne и Ar), либо за счет динамического эффекта Яна-Теллера. Таким образом, проблему первого возбужденного синглетного состояния полносимметричной молекулы C₆₀ нельзя считать решенной, ширину щели $S_2 - S_1$ следует найти неэмпирически — расчетом ab initio.

2. Возбужденные состояния производных С₆₀ с насыщенными связями

Обращаясь теперь к правой половине рисунка, отметим следующие особенности спектров возбуждения производных молекулы фуллерена с насыщенными связями. С точки зрения химии изменения в спектрах по сравнению с исходной молекулой невелики, они могут быть объяснены в рамках приближения сильной связи для базисных $p\pi$ -орбиталей (радиально направленных гибридных атомных C2*p*-орбиталей). С точки зрения спектроскопии изменения существенны и вызваны понижением симметрии молекулы: это, во-первых, частичное (**S**₆) или полное (**C**₃) снятие дипольного запрета на синглетные переходы, а во-вторых, появление оптической поляризации.

2. 1. И з о м е р ы C_{60} (CH₃- r_6 -H)₃. Из всех изомеров с n = 3 наибольшей теплотой образования обладает изомер с симметрией C_3 и размещением насыщенных связей типа "куб" (т.е. насыщенные связи расположены на трех соседних гранях куба, в который вписывается молекула фуллерена [3]). Как видно из спектра этого изомера на рисунке, вместо синглетных состояний $S_{1,2,...,n}$ фуллерена, разделенных щелью, он имеет первые синглетные возбуждения ¹A (σ -поляризованный переход из основного состояния) и ¹E (π -поляризованный переход). В спектре оптического поглощения изомера следует ожидать существенного отличия от фуллерена,

поскольку переходы в оба состояния разрешенные, находятся как раз в области провала спектра поглощения фуллереном; кроме того, соответствующие им две особенности на крае поглощения изомера должны иметь характерное соотношение интенсивностей σ - и π -компонент 1:2. Такая же особенность должна быть и в спектре возбуждения люминесценции состояния ¹*A*, которое связано дипольно-разрешенным переходом с ¹*E*.

По сравнению с люминесцирующим первым синглетным состоянием фуллерена $S_1 = {}^1T_{2g}$ первые синглетные состояния изомера сдвинуты на 0.3 eV вверх, качественно это согласуется с измерениями [2].

Из-за низкой симметрии внутренняя конверсия в изомерах n = 3 запрещена только по спину, поэтому фосфоресценция этого изомера (попыток ее наблюдать пока не сделано) может оказаться более интенсивной и менее длительной, чем у фуллерена, причем, согласно расчету, энергия перехода почти не изменяется (см. рисунок).

2. 2. И зомеры C_{60} (CH₃- r_6 -H)₆. Два изомера с n = 6 с наибольшими и близкими теплотами образования имеют расположение насыщенных связей типа "куб"; повидимому, они должны синтезироваться в почти одинаковой концентрации. Спектр возбуждения изомера с симметрией C_3 сходен со спектром описанного выше изомера с n = 3, за ислючением того, что его первые синглетные возбуждения расположены выше и расщепление σ - и π -поляризованных компонент примерно втрое больше (0.3 eV). Таким образом, изменение формы полос люминесценции и сдвиг энергии максимума вместе с n, обнаруженный в эксперименте [2], качественно воспроизводятся.

Помимо формы полосы спектры возбуждений (см. рисунок) позволяют судить и о сравнительной интенсивности люминесценции в рядах изомеров. Действительно, наряду со сдвигом максимума по мере увеличения n (числа присоединенных к фуллерену цепей полистирола [2]) растет и интенсивность люминесценции. В качестве реперных образцов мы использовали пленки С60 на кремнии, полученные методом сублимации в вакууме, и растворы фуллерена в толуоле (1 mg на 1 ml). По сравнению с этими реперными образцами интенсивность люминесценции фуллеренсодержащих полистиролов (ФПС) возрастает в несколько раз и максимальна при n = 6. Учитывая, что содержание фуллерена в образцах ФПС составляет единицы и даже доли молярных процентов, следует признать, что квантовая эффективность люминесценции фуллерена в составе ФПС возрастает более чем на порядок. Это свидетельствует о том, что насыщение двойных связей С₆₀ при присоединении полистирольных цепочек, приводящее к снятию дипольного запрета на оптические переходы, играет важную роль в механизме люминесценции. Количественное сопоставление требует дополнительных экспериментов по разделению полос люминесценции и поглощения на отдельные компоненты.

У изомера с симметрией S₆ расщепление σ - и π -поляризованных компонент дипольно-разрешенных синглетных переходов еще больше (0.4 eV), но в этом случае появляется важная особенность — почти неполяризованное синглетное дипольно-запрещенное возбуждение (${}^{1}A_{g} \approx {}^{1}E_{g}$), расположенное между дипольно-разрешенными. Оптические спектры возбуждения люминесценции из состояния ${}^{1}A_{u}$ этого изомера должны отличаться как по форме, так и по интенсивности от всех других, представленных на рисунке, поскольку из возбужденного состояния ${}^{1}E_{u}$ понижение энергии происходит не прямо в первое синглетное состояние $S_{1} = {}^{1}A_{u}$, а преимущественно через ${}^{1}A_{g}$.

Наконец, энергия фосфоресценции этого изомера (см. рисунок) самая низкая из всех — примерно на 0.2 eV ниже, чем у фуллерена и двух других рассмотренных изомеров.

Проведенное исследование позволяет сделать следующие выводы.

Частичное или полное снятие дипольного запрета на переходы в изомерах, образующихся при химическом насыщении n вдойных связей, позволяет спектроскопическими методами проследить за изменениями электронной структуры $p\pi$ -оболочки молекулы фуллерена.

Наибольшими теплотами образования обладают при n = 3, 6 изомеры с высокой симметрией и расположением насыщенных связей на гранях куба, в который вписывается молекула фуллерена.

По сравнению с люминесцирующим первым синглетным состоянием фуллерена центр тяжести расщепленного на σ - и π -компоненты первого синглетного состояния у изомера с n = 3 сдвинут вверх, в область малого оптического поглощения фуллерена, а у двух изомеров с n = 6 он расположен еще выше, причем величина расщепления на поляризованные компоненты больше, чем при n = 3. Это качественно объясняет изменение формы полосы люминесценции и сдвиг энергии ее максимума вместе с n, обнаруженные в эксперименте [2].

Изомеры с n = 3 и 6 и симметрией C_3 должны иметь почти зеркальные спектры оптического поглощения и люминесценции с двумя особенностями на крае поглощения (σ - и π -помпоненты) с характеным соотношением интенсивностей 1:2. Такая же особенность должна быть в их спектрах возбуждения люминесценции нижнего (σ -поляризованного) состояния, связанного дипольноразрешенным переходом с верхним. У изометра с n = 6и симметрией S_6 как зеркальная симметрия спектров поглощения и люминесценции, так и соответствие между последним и спектром возбуждения σ -люминесценции нарушаются в связи с тем, что между компонентамив дипольно-разрешенного возбуждения находится почти неполяризованное синглетное дипольно-запрещенное.

Внутренняя конверсия в спин-триплетное состояние в изомерах с насыщенными связями запрещена только по спину, поэтому их фосфоресценция может оказаться более интенсивной и менее длительной, чем у фуллерена, причем, согласно расчету, энергия перехода заметно уменьшается (примерно на 0.2 eV) только у изометров с симметрией S_6 .

Приложение: метод *ΔSCF* для электронных возбуждений основного состояния с замкнутой оболочкой

Рассмотрим многоэлектронную систему с замкнутой оболочкой, метод молекулярных орбиталей (МО) дает для нее однодетерминантное основное состояние Φ_0 . Квантово-химический расчет (ограниченный метод Хартри-Фока — RHF) приводит к самосогласованным МО двух типов: заполненным двумя электронами с противоположными спинами $\sigma = \alpha, \beta$ орбиталям типа *a*, из которых и составляется детерминант Φ_0 , и незаполненным, виртуальным, — типа v. Будем отмечать пространственные части МО, вырожденных по энергии, штрихами. Таким образом, *i* = *a*, *v* означает одну из заполненных или пустых электронных оболочек, принадлежащих неприводимому представлению Г_і пространственной группы многоэлектронной системы, а *i*['] — одну из МО этой оболочки (всего имеется столько *i*', какава размерность представления Γ_i).

Одноэлектронные возбуждения, согласно теореме Бриллюэна, следует строить, заменяя одну из МО, включенных в Φ_0 , $\alpha' \sigma'$, на одну из виртуальных, $\nu'' \sigma''$. Для краткости такое построение будем обозначать $a'\sigma' \rightarrow \nu''\sigma''$, а соответствующий дитерминант $\Phi_{a'\sigma'}^{\nu''\sigma''}$. Теорема Бриллюэна об ортогональности [5]

$$\langle \Phi_{a'\sigma'}^{\nu''\sigma''} | \Phi_0 \rangle = 0 \tag{1}$$

обеспечивает возможность разложения волновой функции возбужденного состояния по детерминантам (1). Если основное состояние имеет только замкнутые (целиком заполненные) оболочки, то орбитальные энергии оболочек, найденные на самосогласованных MO,

$$\varepsilon_{i} = \langle i'|h|i'\rangle + \sum_{a_{1}} \sum_{a_{1}'' \in a_{1}} \left[\langle i'a_{1}''|g|i'a_{1}''\rangle - \langle i'a_{1}''|g|a_{1}''i'\rangle \right],$$
$$i = a, v, \tag{2}$$

позволяют оценить энергии возбуждений как $\Delta E \approx \varepsilon_v - \varepsilon_a$ (теорема Купманса [5]). Здесь *h* означает одноэлектронную часть гамильтониана (кинетическая энергия электронов и их потенциальная энергия в поле остовов), *g* — двухэлектронную (кулоновское отталкивание электронов).

Пусть требуется вычислить энергию возбужденного терма Γ . Тогда следует выбрать такие возбуждения $a \to v$, для которых выполняется

$$\Gamma_a \times \Gamma_v = \Gamma + \dots \tag{3}$$

Волновые функции спин-синглетного ${}^{1}\Gamma$ и спинтриплетного ${}^{3}\Gamma$ термов строятся в виде

$$\Phi_{\Gamma}^{(S,M_s)} = \sum_{a,v:\,\Gamma_a \times \Gamma_v = \Gamma + \dots} C_{av}^{(S)} \sum_{a' \in a,\, v'' \in v} \Phi_{a'}^{i''} \Gamma_{a'v''},$$

$$\Phi_{a'}^{\nu''} = \begin{cases} \frac{1}{\sqrt{2}} \left(\Phi_{a'\alpha}^{\nu''\alpha} \pm \Phi_{a'\beta}^{\nu''\beta} \right), & S = 0, 1; & M_s = 0, \\ \Phi_{a'\beta}^{\nu''\alpha}, \Phi_{a'\alpha}^{\nu''\beta}, & S = 1, & M_s = \pm 1. \end{cases}$$
(4)

Симметризующие (проекционные) коэффициенты $\Gamma_{a'v'}$ даются групповыми соотношениями, а коэффициенты разложения $C_{av}^{(S)}$ составляют предмет решения вариационной задачи, они должны обеспечивать минимум квантово-механического среднего гамильтониана системы на волновых функциях (4). По правилам Слэтера [5] среднее выражается через матричные элементы

$$H_{a_{1}'v_{1}'',a_{2}'v_{2}''}^{(S)} = \left\langle \Phi_{a_{1}'}^{v_{1}''}|H|\Phi_{a_{2}'}^{v_{2}''}\right\rangle = \delta_{a_{1}'a_{2}'}\delta_{v_{1}''v_{2}''}(\varepsilon_{v_{1}} - \varepsilon_{a_{1}}) - \left\langle v_{1}''a_{2}'|g|v_{2}''a_{1}'\right\rangle + \Delta\left\langle v_{1}''a_{2}'|g|a_{1}'v_{2}''\right\rangle,$$
(5)

где $\Delta = 2$ при S = 0 (синглетное возбуждение) и $\Delta = 0$ при S = 1 (триплетное). Вариационная задача для (4) сводится к собственной проблеме вида

$$\sum_{a'_2,v''_2} H^{(S)}_{a'_1,v''_1,a'_2v''_2} C^{(S)}_{a'_2v''_2} = \Delta E^{(S)} C^{(S)}_{a'_1v''_1}.$$
 (6)

При численном решении (6) не обязательно заботиться о проекционных коэффициентах $\Gamma_{a'v''}$. Достаточно отобрать только те пары оболочек для одноэлектронных возбуждений, которые удовлетворяют (3), тогда проекционные коэффициенты факторизуют коэффициенты (6) $C_{a'v''}$, а вектор-столбцы из этих коэффициентов оказываются партнерами всех неприводимых представлений, включая Γ , которые образуются прямыми произведениями (3), вошедшими в разложение.

Для достижения хорошей точности вычислений требуется произвести разложение по как можно большему числу возбужденных детерминантов, поэтому расчеты по методу ΔSCF начанают с введения в (4) в первую очередь тех возбуждений $a \rightarrow v$, которые имеют наименьшую разность орбитальных энергий (2), а затем исследуют сходимость вычисляемых из (6) энергий возбуждения по мере роста размерности разложения. На этом этапе проявляется важнейшее преимущество высокосимметричных систем: многие возбуждения можно исключить из разложения, основываясь лишь на их симметрии (3). Помимо повышения точности достигается и другая цель: вычисленным энергиям возбуждений приписывается определенное неприводимое представление, необходимое для анализа экспериментальных спектров.

Собственные векторы (6) можно использовать и для теоретико-группового анализа МО сложных систем. Так, имея результаты квантово-химического расчета молекулы I_h - C_{60} , весьма затруднительно определить, какому из неприводимых представлений, T_{1p} или T_{2p} , принадлежить трехкратно вырожденная оболочка (четность или нечетность p = g, и определяется легко по коэффициентам МО ЛКАО на атомах, связанных инверсией). Пусть, например, нужно классифицировать две заполненные оболочки одной четности $a = t_{iu}, t_{ju}$. Выбираем любую четырехкратно вырожденную незаполненную оболочку любой четности, например, $v = g_g$, и численно решаем задачу (6) при

$$(a \to v) = t_{iu} \to g_g, \qquad t_{ju} \to g_g$$
(7)

с 24 детерминантами в разложении. Для группы икосаэдра I имеем

$$T_1 \times G = T_2 + H + G, \quad T_2 \times G = T_1 + H + G,$$

т.е. возбуждение $t_{iu} \rightarrow g_g$ не вносит вклада в терм T_{iu} . При $i \neq j$ собственные векторы C_{av} , у которых собственные числа ΔE трехкратно вырождены, будут относиться либо к T_{1u} , либо к T_{2u} и иметь легко обнаруживаемую особенность: 12 из его 24 компонент нулевые на той половине возбуждений (7), которая не вносит вклада в соответствующий терм. Рассмотренный пример показывает, что теоретико-групповой анализ с помощью собственных векторов задачи ΔSCF может значительно упростить исследование пространственной симметрии MO.

Список литературы

- A.N. Aleshin, Yu.F. Biryulin, N.B. Mironkov, L.V. Sharonova, E.N. Fadeeva, V.N. Zgonnik. Fullerene Sci. Technol. 6, 3, 545 (1998).
- [2] Ю.Ф. Бирюлин, В.С. Вихнин, В.Н. Згонник. ФТТ 42, 1, 188 (2000).
- [3] С.С. Моливер, Ю.Ф. Бирюлин. ФТТ 42, 10, 1899 (2000).
- [4] Ю.Ф. Бирюлин, В.С. Лебедев, С.Н. Миков, С.Е. Орлов, Д.А. Сыкманов, Л.В. Шаронова, В.Н. Згонник. ФТТ 42, 10, 1904 (2000).
- [5] R. McWeeny. Methods of Molecular Quantum Mechanics. Academic, London (1989). V. 15. 573 p.
- [6] F.A. Salazar, A. Fedorov, M.N. Berberan-Santos. Chem. Phys. Lett. 271, 361 (1997).
- [7] J.S. Ahn, K. Suzuki, Y. Iwasa, T. Mitani. J. Lumin. 72–74, 464 (1997).
- [8] J.S. Ahn, K. Suzuki, Y. Iwasa, N. Otsuka, T. Mitani. J. Lumin. 76–77, 201 (1998).
- [9] S.-K. Lin, L.-L. Shiu, K.-M. Chien, T.-Y. Luh, T.-I. Lin, J. Phys. Chem. 99, 1, 105 (1995).
- [10] D.J. van den Heuvel, G.J.B. van den Berg, E.J.J. Groenen, J. Schmidt, I. Holleman, G. Meijer. J. Phys. Chem. 99, 30, 11644 (1995).
- [11] A. Sassara, G. Zerza, M. Chergui. J. Chem. Phys. 107, 21, 8731 (1997).

- [12] K. Hansen, R. Müller, P. Brockhaus, E.E.B. Campbell, I.V. Hertel. Z. Phys. **D42**, 153 (1997).
- [13] C.M. Lock, A.G. Brenton, D. Mathur. Chem. Phys. Lett. 273, 1 (1997).
- [14] В.П. Белоусов, И.М. Белоусова, В.П. Будтов, В.В. Данилов, О.Б. Данилов, А.Г. Калинцев, А.А. Мак. Опт. журн. 64, 12, 3 (1997).
- [15] G. Aauvé, N.M. Dimitrijević, P.V. Kamat. J. Phys. Chem. 99, 4, 1199 (1995).
- [16] A.F. Benedetto, R.B. Weisman. Chem. Phys. Lett. **310**, 25 (1999).
- [17] H.T. Etheridge III, R.D. Averitt, N.J. Halas, R.B. Weisman. J. Phys. Chem. 99, 29, 11 306 (1995).
- [18] С.С. Моливер. ФТТ 42, 4, 655 (2000).
- [19] M. Diehl, J. Degen, H.-H. Schmidtke. J. Phys. Chem. 99, 25, 10092 (1995).
- [20] A. Sassara, G. Zerza, V. Ciulin, M.T. Portella-Oberli, J.-D. Ganiere, B. Deveaud, M. Chergui. J. Lumin. 83–84, 29 (1999).