## Изменение электронной плотности на ядрях <sup>67</sup>Zn при сверхпроводящем переходе в металлоксидах меди

© Н.П. Серегин, Ф.С. Насрединов, П.П. Серегин

Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия

(Поступила в Редакцию 23 мая 2000 г. В окончательной редакции 18 сентября 2000 г.)

Методом эмиссионной мессбауэровской спектроскопии на изотопе  ${}^{67}$ Cu( ${}^{67}$ Zn) показано, что переход в сверхпроводящее состояние для соединений Nd<sub>1.85</sub>Ce<sub>0.15</sub>CuO<sub>4</sub>, La<sub>1.85</sub>Sr<sub>0.15</sub>CuO<sub>4</sub> и Tl<sub>2</sub>Ba<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> сопровождается перераспределением электронной плотности кристалла, что интерпретируется как следствие Бозеконденсации куперовских пар.

Явление сверхпроводимости обусловлено возникновением куперовских пар и образованием Бозе-конденсата, описываемого единой когерентной волновой функцией [1]. Это означает, что распределение электронной плотности в узлах кристаллической решетки сверхпроводника должно различаться при температурах выше и ниже температуры перехода в сверхпроводящее состояние  $T_c$ .

Поскольку изомерный сдвиг *I.S.* мессбауэровских спектров определяется электронной плотностью на исследуемых ядрах, в принципе возможно обнаружить процесс образования куперовских пар методом измерения температурной зависимости центра тяжести *S* мессбауэровских спектров сверхпроводников. Температурная зависимость *S* при постоянном давлении *P* определяется тремя членами [2]

$$(\delta S/\delta T)_P = (\delta I.S./\delta \ln V)_T (\delta \ln V/\delta T)_P + (\delta D/\delta T)_P + (\delta I.S./\delta T)_V.$$
(1)

Первый член в (1) представляет зависимость изомерного сдвига *I.S.* от объема *V.* Второй член в (1) описывает влияние допплеровского сдвига второго порядка *D* и в дебаевском приближении имеет вид [2]

$$(\delta D/\delta T)_P = -(3k_B E_0/2Mc^2)F(T/\theta), \qquad (2)$$

где  $k_B$  — постоянная Больцмана,  $E_0$  — энергия изомерного перехода, M — масса ядра-зонда, c — скорость света в вакууме,  $\theta$  — температура Дебая,  $F(T/\theta)$  — функция Дебая. Наконец, третий член в (1) описывает температурную зависимость изомерного сдвига *I.S.* при постоянном объеме. Появление этого члена вызвано изменением электронной плотности на мессбауэровских ядрах, и этот эффект ожидается при переходе матрицы в сверхпроводящее состояние. Иными словами, мессбауэровская спектроскопия позволяет экспериментально измерять электронную плотность в узлах кристаллической решетки и ее изменение при переходе через  $T_c$ . Сравнение экспериментальных и теоретических величин электронной плотности кожет послужить критерием выбора

тех или иных моделей, описывающих явление сперхпроводимости. Именно это обстоятельство послужило причиной появления многочисленных работ по исследованию влияния перехода в сверхпроводящее состояние на параметры мессбауэровских спектров.

Однако попытки обнаружить процесс образования куперовских пар и Бозе-конденсата методом измерения температурной зависимости центра тяжести *S* мессбауэровских спектров <sup>119</sup>Sn для классического сверхпроводника Nb<sub>3</sub>Sn не были успешными [3]: наблюдаемая зависимость *S* от температуры удовлетворительно описывалась допплеровским сдвигом второго порядка, и вблизи  $T_c$  не отмечалось особенностей в поведении S(T), которые можно было бы приписать изменению изомерного сдвига.

Позднее, после открытия явления высокотемпературной сверхпроводимости, была предложена теоретическая модель влияния куперовских пар и Бозеконденсации на изомерный сдвиг мессбауэровских спектров <sup>57</sup>Fe [4] и предприняты попытки экспериментального обнаружения такого влияния для примесных атомов <sup>57</sup>Fe в YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> [5], (BiPb)<sub>2</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10</sub> [6] и (Tl,Pb)(Sr,Ba)<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub> [7]. Однако и в этих случаях не были получены убедительные доказательства влияния перехода в сверхпроводящее состояние на изомерный сдвиг мессбауэровских спектров.

Эти факты объясняются малой величиной  $\Delta/2G$ (здесь  $\Delta$  — максимально достижимая разность изомерных сдвигов мессбауэровских спектров в обычной и сверхпроводящей фазах,  $G = \hbar/\tau_0$  — естественная ширина ядерного уровня,  $\tau_0$  — среднее время жизни ядерного уровня), которая для случая мессбауэровской спектроскопии на изотопах <sup>57</sup>Fe и <sup>119</sup>Sn не превышает 6.

Условия обнаружения куперовских пар методом мессбауэровской спектроскопии должны быть наиболее благоприятными для случая высокотемпературных сверхпроводников (имеющих минимальный масштаб куперовской корреляции), если использовать зонд, для которого  $\Delta/2G \gg 10$ . Выбор объектов для исследования должен также учитывать необходимость введения в узлы решетки мессбауэровского зонда.

Все эти условия выполняются для случая мессбауэровского зонда <sup>67</sup>Zn в решетках металлоксидов меди при использовании эмиссионного варианта мессбауэровской спектроскопии на изотопе <sup>67</sup>Cu(<sup>67</sup>Zn): для <sup>67</sup>Zn  $\Delta/2G \sim 200$  и возможно введение материнского изотопа <sup>67</sup>Cu в процессе синтеза в узлы меди, так что дочерний изотоп <sup>67</sup>Zn также оказывается в медном узле решетки [8].

В настоящей работе результаты таких исследований приведены для зонда  $^{67}$ Zn в решетках Nd<sub>1.85</sub>Ce<sub>0.15</sub>CuO<sub>4</sub>, La<sub>1.85</sub>Sr<sub>0.15</sub>CuO<sub>4</sub> и Tl<sub>2</sub>Ba<sub>2</sub>CuCa<sub>2</sub>O<sub>8</sub>. В качестве контрольного объекта, для которого не наблюдается перехода в сверхпроводящее состояние, была выбрана закись меди Cu<sub>2</sub>O.

## Экспериментальные результаты и их обсуждение

Мессбауэровские источники готовились путем диффузии радиоактивного безносительного  $^{67}$ Cu в поликристаллические образцы Nd<sub>1.85</sub>Ce<sub>0.15</sub>CuO<sub>4</sub> ( $T_c = 22$  K), La<sub>1.85</sub>Sr<sub>0.15</sub>CuO<sub>4</sub> ( $T_c = 37$  K), Tl<sub>2</sub>Ba<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> ( $T_c = 60$  K) и Cu<sub>2</sub>O в вакуумированных кварцевых ампулах при 550° C в течение двух часов в токе кислорода. Для контрольных образцов не наблюдалось заметного изменения  $T_c$ .

Мессбауэровские спектры  ${}^{67}$ Cu( ${}^{67}$ Zn) снимались с поглотителем  ${}^{67}$ ZnS. Температура поглотителя для всех спектров была 10(2) K, тогда как температура источника могла меняться в интервале от 10(1) до 80(1) K.

Мессбауэровские спектры всех керамик в выбранном интервале температур представляли собой хорошо разрешенные квадрупольные триплеты, изомерный сдвиг которых отвечает ионам  $^{67}Zn^{2+}$  в узлах меди. Оказалось, что постоянные квадрупольного взаимодействия *C* для всех керамик практически не зависят от температуры. Поскольку для зонда  $Zn^{2+}$  градиент электрического поля в ядрах  $^{67}Zn$  создается только ионами кристаллической решетки, а изменения постоянных решеток в интервале температур 4.2–80 К пренебрежимо малы [9,10], независимость *C* от температуры не является неожиданной.

Температурные зависимости положения центра тяжести спектра S, измеренного относительно его значения при  $T_c$ , существенно различаются для контрольных и сверхпроводящих материалов (в качестве примера на рис. 1 приведена такая зависимость для La<sub>1.85</sub>Sr<sub>0.15</sub>CuO<sub>4</sub> и Cu<sub>2</sub>O), хотя при переходе через  $T_c$  для всех соединений резких скачков в величине S на наблюдается.

Температурная зависимость *S* определяется выражением (1); как показывают расчеты [11], первым членом в (1) для случая <sup>67</sup>Zn можно пренебречь, поскольку для выбранного интервала температур он не превышает величины 0.03  $\mu$ m/s, а в интервале температур 10–80 K для всех исследованных соединений не наблюдается структурных фазовых переходов [9,10].



**Рис. 1.** Температурная зависимость центра тяжести *S* мессбауэровского спектра <sup>67</sup>Zn, измеренная относительно его значения при 37 K, для La<sub>1.85</sub>Sr<sub>0.15</sub>CuO<sub>4</sub> (*1*) и Cu<sub>2</sub>O (*2*). Сплошная линия соответствует теоретической температурной зависимости *S* для случая допплеровского сдвига второго порядка при  $\theta = 400$  K.

Второй член в (1) описывает влияние допплеровского сдвига второго порядка. Как видно из рис. 1, экспериментальные данные для контрольных образцов в выбранном температурном интервале удовлетворительно описываются зависимостью (2), рассчитанной для  $\theta \approx 400$  К (Cu<sub>2</sub>O). Для сверхпроводящих образцов экспериментальные данные при  $T > T_c$  также описываются зависимостью вида (2) для  $\theta \approx 360$  К (Nd<sub>1.85</sub>Ce<sub>0.15</sub>CuO<sub>4</sub>), 400 К (La<sub>1.85</sub>Sr<sub>0.15</sub>CuO<sub>4</sub>) и 260 К (Tl<sub>2</sub>Ba<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub>) (согласно измерениям теплоемкости дебаевские температуры для Nd<sub>2</sub>CuO<sub>4</sub>, La<sub>2-x</sub>Sr<sub>x</sub>CuO<sub>4</sub> и Tl<sub>2</sub>Ba<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> равны соответственно 300 [12], 420 [13] и 270 К [13]).

Наконец, третий член в выражении (1) описывает температурную зависимость изомерного сдвига. Величина I.S. при данной температуре T может быть найдена как разность  $[I.S.]_T = S_T - D_T$  (здесь  $S_T$  и  $D_T$  — центр тяжести спектра и допплеровский сдвиг при температуре T соответственно). Возрастание I.S. с понижением температуры в области  $T < T_c$  свидетельствует о возрастании электронной плотности на ядрах <sup>67</sup>Zn и, следовательно, о локализации на мессбауэровском зонде электронных пар. Предельные значения величины I.S. при  $T \rightarrow 0 \,\mathrm{K} \, [I.S.]_0 = S_0 - D_0$  должны зависеть от размера куперовских пар, т.е. от величины Т<sub>с</sub>. Справедливость этого заключения иллюстрируется рис. 2, на котором приведена зависимость  $[I.S.]_0$  от  $T_c$ : с ростом  $T_c$ (т.е. с уменьшением радиуса куперовской корреляции) величина [I.S.]<sub>0</sub> возрастает, что отражает факт увеличения электронной плотности на ядрах <sup>67</sup>Zn.

Таким образом, установлено, что для сверхпроводников  $Nd_{1.85}Ce_{0.15}CuO_4$ ,  $La_{1.85}Sr_{0.15}CuO_4$  и  $Tl_2Ba_2CaCu_2O_8$ 



Рис. 2. Зависимость  $[I.S.]_0$  от  $T_c$  для  $Nd_{1.85}Ce_{0.15}CuO_4$  (1),  $La_{1.85}Sr_{0.15}CuO_4$  (2) и  $Tl_2Ba_2CaCu_2O_8$  (3).



Рис. 3. Зависимость  $[I.S.]_T/[I.S.]_0$  от параметра  $x = 1.76(kT/\Delta)$ . Сплошной кривой показана теоретическая зависимость эффективной плотности сверхтекучих электронов от параметра x. Точками представлены соединения Nd<sub>1.85</sub>Ce<sub>0.15</sub>CuO<sub>4</sub> (1), La<sub>1.85</sub>Sr<sub>0.15</sub>CuO<sub>4</sub> (2) и Tl<sub>2</sub>Ba<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> (3).

в области  $T > T_c$  температурная зависимость S определяется допплеровским сдвигом второго порядка, тогда как в области  $T < T_c$  на величину S влияет также процесс локализации куперовских пар на мессбауэровском зонде. Понижение температуры увеличивает влияние указанного процесса на величину S, поскольку с понижением температуры возрастает доля Бозе-конденсата. В теории БКШ температурная зависимость эффективной плотности сверхтекучих электронов  $\rho(T)$  может быть записана [1] в виде

$$\rho(T) = 1 - \left(2\beta E_F / k_F^5\right) \int_0^\infty \left\{k^4 \exp(\beta E_k) / \left[\exp(\beta E_k) + 1\right]^2\right\} dk,$$

где  $E_F = k_F^2/2m$  — энергия Ферми, m — масса частицы, k — волновой вектор,  $k_F$  — значение волнового вектора на поверхности Ферми,  $E_k$  — энергия k-состояния,  $\beta$ имеет смысл энергии связи сверхтекучей компоненты.

С другой стороны, следовало ожидать, что  $\rho(T) \sim [I.S.]_T / [I.S.]_0.$ Поэтому на рис. 3 приведена зависимость теоретическая  $\rho$ от параметра  $x = 1.76(k_BT/\Delta)$  (здесь  $k_B$  — постоянная Больцмана,  $\Delta = 3.06 k_B [T_c (T_c - T)]^{1/2}$  — энергетическая щель в спектре элементарных возбуждений сверхпроводника), взятая из [1], вместе с нашими данными по зависимости  $[I.S.]_T/[I.S.]_0$  от параметра x. Видно, что имеется удовлетворительное согласие расчетных и экспериментальных величин. Иными словами, мессбауэровская спектроскопия на изотопе <sup>67</sup>Zn является эффективным методом исследования процесса образования куперовских пар и их Бозе-конденсации в высокотемпературных сверхпроводниках.

К сожалению, не очевидны модели, способные описать возрастание электронной плотности на ядрах примесного центра <sup>67</sup>Zn в сверхпроводнике при температурах ниже Т<sub>с</sub>. Например, указанное возрастание электронной плотности можно рассматривать как результат изменения зарядового состояния зонда Zn. Однако здесь возникают две проблемы. Во-первых, экспериментально определенные величины  $[I.S.]_0 (\sim 2-5 \,\mu\text{m/s})$ значительно меньше, чем величина изомерного сдвига  $(\sim 165\,\mu{\rm m/s})$ , ожидаемая для процесса перезарядки центра цинка  $Zn^{2+} \rightarrow Zn^0$  [11]. Эта трудность может быть преодолена, если предположить, что эффективный радиус локализации электронной пары на примесном центре существенно превышает ионный радиус Zn<sup>2+</sup> (например, в качестве радиуса локализации может быть принят радиус куперовской корреляции, который для случая ВТСП составляет  $\sim 10^{-7}$  cm). Во-вторых, зарядовое состояние цинка определяется положением электронного уровня примеси цинка относительно уровня Ферми. Следовательно, необходимо предположить, что при  $T > T_c$  уровнь цинка находится значительно выше уровня Ферми и зарядовое состояние примеси не зависит от температуры. В противоположность этому наблюдаемая температурная зависимость S означает, что при T < T<sub>c</sub> уровень цинка находится вблизи уровня Ферми с точностью до  $k_B T$ .

Другое объяснение предполагает, что наблюдаемое повышение электронной плотности на ядрах <sup>67</sup>Zn связано с пространственным перераспределением электронов в результате Бозе-конденсации. Проблема, возникающая для такой модели, связана с принципиальной возможностью обнаружить такое перераспределение электронной

плотности с помощью примесного зонда. Зонд <sup>67</sup>Zn является двухэлектронным центром с отрицательной корреляционной энергией [14]. Локализованная на центре цинка пара s-электронов обладает нулевыми значениями полного момента, орбитального момента и спина. С другой стороны, согласно модели БКШ, при T < T<sub>c</sub> спариваются электроны с противоположными импульсами, так что полный импульс, орбитальный момент и спин куперовской пары также равны нулю. Именно сочетание этих факторов и благоприятствует наблюдению эффекта Бозе-конденсации с помощью зонда <sup>67</sup>Zn. Однако следует иметь в виду, что в теории БКШ предполагаются s-спаривание, тогда как в ВТСП спаривание имеет *d*-симметрию [4]. Поэтому следует с большой осторожностью относиться к обнаруженному нами согласию между теоретической и экспериментальной зависимостями эффективной плотности сверхтекучих электронов от параметра *x* (рис. 3).

Таким образом, для соединений  $Nd_{1.85}Ce_{0.15}CuO_4$ ,  $La_{1.85}Sr_{0.15}CuO_4$  и  $Tl_2Ba_2CaCu_2O_8$  методом эмиссионной мессбауэровской спектроскопии <sup>67</sup>Cu(<sup>67</sup>Zn) показано, что переход в сверхпроводящее состояние сопровождается перераспределением электронной плотности кристалла, а эмиссионная мессбауэровская спектроскопия <sup>67</sup>Cu(<sup>67</sup>Zn) является эффективным методом исследования процесса Бозе-конденсации куперовских пар.

## Список литературы

- [1] Дж. Шриффер. Теория сверхпроводимости. М. (1970).
- [2] Д. Надь. В кн.: Мессбауэровская спектроскопия замороженных растворов / Под ред. А. Вертеш и Д. Надь. Мир, М. (1998). С. 11-67.
- [3] J.S. Shier, R.D. Taylor. Phys. Rev. 174, 346 (1968).
- [4] F.P. Marin, R. Iraldi. Phys. Rev. B39, 4273 (1989).
- [5] V.M. Cherepanov, M.A. Chuev, E.Yu. Tsymbal, Ch. Sauer, W. Zinn, S.A. Ivanov, V.V. Zhurov. Solid State Commun. 93, 921 (1995).
- [6] Th. Sinnemann, R. Job, M. Rosenberg. Phys. Rev. B45, 4941 (1992).
- [7] Yun-Bo Wang, Guo-Hui Cao, Yang Li, Xin Ju, Long Wei, Wei-Fang Wu. Physica C282–287, 1057 (1997).
- [8] Ф.С. Насрединов, Н.П. Серегин, П.П. Серегин. Письма в ЖЭТФ 70, 632 (1999).
- [9] W. Sadowski, H. Hagemann, M. Francois, H. Bill, M. Peter, E. Walker, K. Yvon. Physica C170, 103 (1990).
- [10] M. Braden, P. Schweiss, G. Heger, W. Reichardt, Z. Fisk, K. Gamayunov, I. Tanaka, H. Kojima. Physica C223, 396 (1994).
- [11] M. Steiner, W. Potzel, C. Schafer, W. Adlassing, M. Peter, H. Karzel, G.M. Kalvius. Phys. Rev. B41, 1750 (1990).
- [12] A. Tigheza, R. Kuentzler, G. Pourroy, Y. Dossmam, M. Drillon. Physica B165–166, 1331 (1990).
- [13] H.M. Ledbetter, S.A. Kim, R.B. Goldfarb. Phys. Rev. B39, 9689 (1989).
- [14] Ф.С. Насрединов, Н.П. Серегин, П.П. Серегин. ФТП **34**, 275 (2000).