Суперсверхтонкое взаимодействие в тригональном центре BaF₂: Gd³⁺ и анализ искажений решетки в окрестности примесного иона

© А.Д. Горлов, В.Б. Гусева, А.П. Потапов, А.И. Рокеах

Научно-исследовательский институт физики и прикладной математики при Уральском государственном университете, 620083 Екатеринбург, Россия

E-mail: Anatoliy.Gorlov@usu.ru

(Поступила в Редакцию 17 апреля 2000 г. В окончательной редакции 1 августа 2000 г.)

> Из экспериментальных спектров ДЭЯР тригонального центра $BaF_2: Gd^{3+}$ определены константы суперсверхтонкого взаимдействия Gd^{3+} с ядерными спинами ¹⁹F первых четырех координационных сфер. Эти данные использованы для анализа искажений кристаллической решетки в окрестности примесного иона. Получено, что наибольшие смещения ядер фтора наблюдаются вблизи иона-компенсатора и примесного иона. Для расчета положения анионов первой координационной сферы, электронно-ядерное взаимодействие которых с Gd^{3+} существенным образом зависит от химических связей в комплексе $Gd^{3+}F_8^-$, использована эмпирическая модель для изотропных констант суперсверхтонкого взаимодействия Gd^{3+} с ядрами фтора в кубических центрах с учетом поляризации примесного иона.

Тригональные примесные центры Gd³⁺ в BaF₂ возникают при выращивании кристаллов из-за компенсации избыточного положительного заряда примеси ионом Fв ближайшем междоузлии кристалла по оси С3. Локальные искажения ближайшего анионного окружения (первая координационная сфера) Gd^{3+} , обусловленные компенсатором (F^k) , были проанализированы нами в работе [1] на основе модели суперпозиции для констант спинового гамильтониана (СГ) второго и четвертого рангов [2], описывающих штарковское расщепление основного состояния тригональных центров ¹⁵⁷Gd³⁺ в SrF₂ и BaF₂, с использованием некоторых результатов наших исследований суперсверхтонкого взаимодействия (ССТВ) Gd³⁺ с лигандами в BaF₂. В данной работе мы подробно рассматриваем локальную структуру тригонального центра Gd³⁺ в BaF₂, опираясь на результаты ДЭЯР исследований ССТВ Gd³⁺ с ядрами ¹⁹F (ядерный спин I = 1/2) первых четырех координационных сфер и ионом-компенсатором. ССТВ, исследуемое методом ДЭЯР, определяется для индивидуальной пары Gd³⁺-¹⁹F, что позволяет в случае взаимодействия этих ионов как двух точечных магнитных диполей рассчитать координаты лигандов относительно примесного иона. Для определения координат ближайших лигандов, для которых вклады близкодействия (ковалентность и перекрывание электронных оболочек примеси и окружающих ионов) в ССТВ велики, необходима модель, описывающая радиальные зависимости констант электронноядерного взаимодействия. Эмпирическая модель, учитывающая вклады в ССТВ ковалентности и перекрывания электронных оболочек Gd³⁺ и F⁻, поляризованного электрическим полем окружения, была предложена в [3] и использована нами в [4] для определения радиальных зависимостей контстант ССТВ кубических центров Eu²⁺ и Gd³⁺ в кристаллах со структурой флюорита. В данной работе такая модель, учитывающая еще и поляризацию

примесного иона, использована для описания изотропных констант тригонального центра Gd³⁺ в BaF₂.

1. Результаты ДЭЯР-исследований и их обсуждение

В кристаллах BaF₂ с примесью GdF₃ (0.01% по весу в шихте), выращенных методом Стокбаргера, наблюдались тригональные и кубические спектры ЭПР Gd³⁺ (электронный спин S = 7/2) с соотношением интенсивностей 20:1. ЭПР тригонального центра при температуре T = 4.2 К хорошо описывался стандартным СГ с параметрами, приведенными в работе [5], в системе координат (называемой далее лабораторной), где главная ось симметрии центра $C_3 \parallel Z \parallel$ [111], а оси $X \parallel$ [112], $Y \parallel$ [110].

ДЭЯР-измерения проводились в основном в ориентациях внешнего магнитного поля вдоль осей симметрии кристалла (C_3 , C_2 , C_4), а также при необходимости исследовались фрагменты угловых зависимостей вблизи этих осей. Из-за наличия иона-компенсатора локальная симметрия некоторых анионов понижается от $C_{3\nu}$ до C_s , изменяются их расстояния до Gd³⁺, что значительно увеличивает число сигналов ДЭЯР по сравнению с кубическим центром Gd³⁺ в BaF₂, усложняя расшифровку и описание спектров.

Практически во всех ориентациях сигналы ДЭЯР, обусловленные ближайшими к примесному иону симметрийно-эквивалентными ядрами фтора (на рис. 1 они объединены в правильные треугольники), имели тонкую структуру, связанную с косвенным ядерядерным взаимодействием через примесный ион [6,7]. Наши расчеты такой структуры показали, что ее центр совпадает с положением сигналов ДЭЯР при отсутствии косвенного взаимодействия, поэтому при определении констант ССТВ использованы частоты, соответствующие положению центров структуры.

Рис. 1. Часть локального окружения тригонального примесного центра в BaF₂. Показаны ближайшие к Gd³⁺ лиганды и те ядра фтора двух-четырех координационных сфер, которые смещены по сравнению с кубическим центром.

В соответствии с симметрией восемь ближайших к Gd³⁺ ядер фтора разбиваются на две группы. На рис. 1 показаны два неэквивалентных ядра на оси С₃ с локальной симметрий C_{3v} (тип ядер — 111, $\overline{1}\overline{1}\overline{1}$) и два равносторонних неэквивалентных треугольника с плоскостями, перпендикулярными оси С₃, составленные из ядер фтора типа 111, 111, 111 и 111, 111, 111 (локальная симметрия ядер — C_s). Здесь и далее цифры, определяющие тип ядер, связаны с координатами F⁻ в неискаженной решетке.

Часть СГ, необходимая для описания ССТВ лигандов с симметрией Cs в локальной системе координат любого выделенного ядра (ось г параллельна оси связи $Gd^{3+}-{}^{19}F$, ось *x* лежит в плоскости, содержащей ось связи и C_3), имеет вид

$$H_{n} = (A_{s} + 2A_{p}) \cdot O_{1}^{0}(S)O_{1}^{0}(I) + (A_{s} - A_{p} - A_{E})$$

$$\times O_{1}^{1}(S)O_{1}^{1}(I) + (A_{s} - A_{p} + A_{E}) \cdot \Omega_{1}^{1}(S)\Omega_{1}^{1}(I)$$

$$+ (A_{1} + 4A_{2}) \cdot O_{3}^{0}(S)O_{1}^{0}(I) + (A_{1} - 3A_{2})$$

$$\times (O_{3}^{1}(S)O_{1}^{1}(I) + \Omega_{3}^{1}(S)\Omega_{1}^{1}(I)) - g_{n}\beta_{n} \cdot (HI). \quad (1)$$

Все обозначения в (1) общепринятые [6,7]. Отметим, что в гамильтониане оставлены лишь те члены типа $S^{3}I$, вклады которых в частоты ДЭЯР больше ошибок измерений (> 5 KHz). Соответствующий СГ для лигандов с симметрией С_{3v} получается из (1) при $A_E = (A_{yy} - A_{xx})/2 = 0.$

Константы ССТВ определялись из численной минимизации среднеквадратичного отклонения по набору экспериментальных и расчетных частот ДЭЯР каждого ядра для всех ориентаций магнитного поля одновременно. Проводилась компьютерная диагонализация матрицы энергии, полученной из гамильтониана, включающего в себя как часть, описывающую расщепление основного состояния [5], так и Н_n, приведенный к лабораторной системе координат. Углы Θ и φ , переводящие локальную систему координат любого ядра фтора в лабораторную, а по сути угловые координаты лиганда, стандартным способом [6] входили в выражения для частот ДЭЯР и также определялись в процессе минимизации.

Расчеты показали, что ССТВ Gd³⁺ с ядрами фтора второй и более далеких координационных сфер, вкючая и F^k (вне зависимости от локальной симметрии лиганда), описывается аксиально симметричными тензорами ССТВ (в локальных системах координат), причем константы $A_s = 0$, $A_E = 0$, $A_1 = A_2 = 0$, а компоненты $A_{zz} = -2A_{xx} = -2A_{yy} = 2A_p$. Такая ситуация возникает в случае, когда ССТВ определяется диполь-дипольным взаимодействием примесного иона и ¹⁹ F. Следовательно, величина $A'_p = A_p - A_d$, связанная с близкодействием в паре Gd³⁺-19F (для фторидов обычно $A_s > A'_p$ [3,4,6–9]), равна нулю. Тогда анизотропная константа $A_p = A_d = gg_n \mu \mu_n / R^3$ [3,4,6], где A_d — константа диполь-дипольного взаимодействия, R — расстояние от Gd³⁺ до ¹⁹ F.

В табл. 1 представлены константы ССТВ компенсатора и анионов двух-четырех координационных сфер примесного иона, приведены рассчитанные координаты этих лигандов в лабораторной системе координат, а также отклонения от соответствующих значений для кубического центра Gd^{3+} в BaF₂. Азимутальные углы φ не приведены, так как в пределах ошибок расчетов не замечено их отличий от соответствующих величин для кубического центра. Из данных табл. 1 видно, что наиболее заметно сдвигаются близкие к компенсатору лиганды типа 311, 313 и 333 (рис. 1), увеличивая расстояние в паре $\mathrm{Gd}^{3+}-{}^{19}\mathrm{F}$ и полярные углы $\Theta \neq 0,\ 180^\circ,$ а остальные ионы фтора с точностью до ошибок, связанных с разбросом экспериментальных частот ДЭЯР, локализованы в тех же положениях, что и в кубическом примесном центре [4]. Следовательно, можно считать, что Gd^{3+} , замещая Ba^{2+} , не смещается к компенсатору, а F^k сдвинут к примесному иону относительно центра междоузлия в чистой решетке ВаF₂. Аналогичные результаты получены в работе [9], где изучались тригональные центры Yb³⁺ в SrF₂ и BaF₂.

В табл. 2 приведены полученные из спектров ДЭЯР константы ССТВ и углы Θ ближайших к Gd³⁺ ядер фтора в их локальных системах координат. А_s однозначно связываются с ядрами фтора в треугольниках по величинам углов Θ , так как из-за кулоновского отталкивания должно быть $\Theta > \Theta_{cub}$, что и реализуется для ядер типа 111 (рис. 1) в верхнем треугольнике. Для ядер типа 111 в нижнем треугольнике $\Theta \cong \Theta_{cub}$. Заметные угловые и радиальные смещения ядер первой координационной сферы обычно сопровождаются сдвигами во второй координационной сфере [3,8,9], однако все ¹⁹F, близкие к

Номер сферы	Тип ядер (количество ядер)	A_p , kHz	R,Å	Θ , degree	ΔR , Å	$\Delta \Theta$, degree
2	$\begin{array}{c} 311(3) \\ 1\bar{1}3(3), 31\bar{1}(3) \\ \bar{1}\bar{1}3(3) \\ 1\bar{3}1(3) \\ 1\bar{3}\bar{1}(3), \bar{1}1\bar{3}(3) \\ \bar{1}\bar{3}\bar{1}(3), \bar{1}3\bar{1}(3) \end{array}$	534(3) 573(4) 567(3) 565(3) 566(4) 576(3)	$5.18(1) \\ 5.06(1) \\ 5.08(1) \\ 5.08(1) \\ 5.08(1) \\ 5.08(1) \\ 5.08(2)$	$\begin{array}{c} 31.0(2) \\ 58.8(2) \\ 80.5(2) \\ 100.0(2) \\ 121.7(2) \\ 150.6(2) \end{array}$	$\begin{array}{c} 0.10(1) \\ -0.02(2) \\ 0.00(2) \\ 0.01(1) \\ 0.01(1) \\ -0.01(2) \end{array}$	$1.9(3) \\ 0.4(3) \\ 0.3(3) \\ 0.3(3) \\ 0.3(3) \\ -0.1(3)$
3	$\begin{array}{c} 313(3) \\ 3\bar{1}3(3) \\ 1\bar{3}3(3), 3\bar{3}1(3) \\ \bar{1}\bar{3}3(3), 3\bar{3}\bar{1}(3) \\ \bar{3}\bar{3}1(3) \\ \bar{3}\bar{3}\bar{1}(3) \\ \bar{3}\bar{3}\bar{1}(3) \end{array}$	232(2) 246(2) 247(2) 247(2) 246(4) 249(2)	$\begin{array}{c} 6.83(2) \\ 6.70(2) \\ 6.70(2) \\ 6.70(1) \\ 6.70(1) \\ 6.68(3) \end{array}$	22.7(2) 48.6(4) 82.5(3) 97.5(5) 131.5(4) 157.9(5)	$\begin{array}{c} 0.14(3) \\ 0.00(3) \\ 0.00(3) \\ 0.00(3) \\ 0.00(3) \\ -0.02(5) \end{array}$	$\begin{array}{c} 0.7(3) \\ 0.0(6) \\ 0.1(4) \\ -0.1(6) \\ 0.0(6) \\ -0.2(6) \end{array}$
4	$\begin{array}{c} 333(1) \\ 511(3) \\ \bar{5}\bar{1}1(3), \bar{1}51(3) \\ \bar{1}\bar{1}5(3), 3\bar{3}3(3) \\ 11\bar{5}(3), 3\bar{3}\bar{3}(3) \\ \bar{1}\bar{5}1(3), \bar{5}1\bar{1}(3) \\ \bar{1}\bar{5}\bar{1}(3) \\ \bar{3}\bar{3}\bar{3}(1) \end{array}$	$137(1) \\ 145(2) \\ 144(2) \\ 145(4) \\ 145(4) \\ 144(2) \\ 144(2) \\ 144(2) \\ 145(2) \\ 1$	$\begin{array}{c} 8.15(2) \\ 8.00(3) \\ 8.01(3) \\ 8.00(7) \\ 8.00(7) \\ 8.01(3) \\ 8.00(3) \\ 7.99(4) \end{array}$	$\begin{array}{c} 0\\ 38.0(3)\\ 56.4(4)\\ 70.5(9)\\ 109.5(9)\\ 123.6(4)\\ 141.0(3)\\ 180 \end{array}$	$\begin{array}{c} 0.16(5) \\ 0.01(7) \\ 0.02(7) \\ 0.0(1) \\ 0.0(1) \\ 0.02(7) \\ 0.01(7) \\ 0.00(7) \end{array}$	$0 \\ 0.1(5) \\ 0.1(6) \\ 0(1) \\ 0(1) \\ -0.1(6) \\ -0.1(5) \\ 0$
	\mathbf{F}^k	533(3)	5.18(1)	0	-	—

Таблица 1. Константы ССТВ и координаты ядер фтора двух–четырех координационных сфер, включая компенсатор, в тригональном центре Gd^{3+} в BaF_2 и отклонения $\Delta R = R - R_{cub}$, $\Delta \Theta = \Theta - \Theta_{cub}$ от координат соответствующих ядер в кубическом центре Gd^{3+} в BaF_2 [1]

Таблица 2. Константы ССТВ и угловые координаты ближайших лигандов в тригональном центре Gd³⁺ в BaF₂, а также рассчитанные в предложенной модели значения расстояний, индуцированных дипольных моментов и изотропных констант

Тип ядра	111	111	111	111
Локальная	C_{3v}	C_s	C_s	C_{3v}
симметрия лиганда				
A_s , MHz	-2.447(5)	-1.755(4)	-1.755(5)	-1.560(4)
A_p, MHz	5.118(3)	4.625(3)	4.598(3)	4.638(2)
A_E , kHz	_	-1(4)	2(4)	_
A ₁ , kHz	-0.9(3)	-1.1(4)	-0.9(5)	-0.8(3)
A_2 , kHz	-0.27(9)	-0.17(7)	-0.12(7)	-0.26(9)
Θ , degree	0	71.0(1)	109.6(1)	180
<i>R</i> , Å (расчет)	2.388	2.408	2.431	2.431
d_z , еÅ (расчет)	0.143	0.097	0.070	0.055
d_x , eÅ (pacчet)	0	0.04	0.017	0
A_s , MHz (расчет)	-2.467	-1.751	-1.744	-1.574

анионам типа $\overline{111}$ и $\overline{111}$, имеют в пределах ошибок те же координаты, что и в кубическом центре. Учитывая это, а также тот факт, что и сам примесный ион не смещен, можно предполагать, что координаты ближайших к Gd³⁺ ядер фтора, удаленных от компенсатора и расположенных ниже плоскости *XY* (рис. 1), те же, что и в кубическом примесном центре. Следовательно, локальное анионное окружение Gd³⁺ можно разбить на две области относительно плоскости *XY* || {111}, проходящей через примесный ион (рис. 1). В первой, содержащей ион-компенсатор, по сравнению с кубическим центром Gd³⁺ в BaF₂ смещения ¹⁹F заметны вплоть до четвертой координационной сферы, а во второй нет. Тогда $R(\bar{1}\bar{1}1) = R(\bar{1}\bar{1}\bar{1}) = 2.431$ Å (расстояния от Gd³⁺ до ядер типа $\bar{1}\bar{1}1$ и $1\bar{1}\bar{1}$) [3]. Для оставшихся двух типов ближайших анионов оценить R значительно сложнее, так как соседние с ними ядра фтора смещены по сравнению с кубическим примесным центром, а константы A_s (табл. 2), определяемые близкодействием, велики и различны. Следовательно, вклады той же природы в анизотропные константы ССТВ, скорее всего, не равны нулю [3,4,8,9]. Из полученных результатов следует, что ближайшие лиганды с локальной симметрией C_s описываются СГ более высокой симметрии, так как $A_E \approx 0$. Мы считаем, что это связано не только с ограничениями в экспериментальной точности, но и с малой величиной тригонального искажения. Это, кстати, подтверждается близкими величинами параметра b_4^0 для тригонального и кубического центров [1]. Следовательно, ССТВ в паре Gd³⁺-¹⁹F можно анализировать как и в кубическом примесном центре, учитывая лишь небольшие изменения в химических связях с малыми изменениями электронной структуры этих ионов при переходе от кубического примесного центра к тригональному.

Определение расстояний до ближайших лигандов

Прежде чем перейти к определению расстояния до ближайших к Gd³⁺ лигандов в тригональном центре, попытаемся избавиться от недостатков в эмпирической модели ССТВ, предложенной Бейкером [3] и использованной нами в [4] для описания констант A_S и A_n пяти кубических центров Gd³⁺ в кристаллах со структурой флюорита. Некорректные представления Бейкера об источниках индуцированных на лигандах электрических дипольных моментов D были устранены в работе [4], однако при этом предполагалось, что вклады в A_s и А_р, связанные с поляризацией лигандов, явно не зависят от расстояния R в паре $\mathrm{Gd}^{3+}-{}^{19}\mathrm{F}$ и определяются лишь величиной $D = d_z = \alpha E_z$ [3] (здесь α поляризуемость ионов фтора в конкретном кристалле, E_7 — электрическое поле на ¹⁹F, направленное по оси связи пары, определяемое избыточным положительным зарядом примеси и смещениями окружающих лигандов). Это приближение также можно исключить, если основываясь на теоретических выражениях для констант ССТВ в линейном по E_z приближении [3], A_s (как и A_p) для кубических центров представить в виде

$$A_s = A_s(R) \cdot (1 + K_s \cdot D). \tag{2}$$

Здесь $A_s(R) = A_s(R_0) \cdot (R_0/R)^n$ — вклад в изотропную константу, зависящий от расстояния до лиганда и определяемый параметрами ковалентности и интегралами перекрывания 4f-, поляризованных 5s- и 5p-состояний Gd^{3+} с 1s-, 2s-состояниями F⁻ [3,8,10–12], $A_s(R_0)$ — параметр модели, равный этому вкладу при $R = R_0 = 2.37$ Å (R_0 взято как в [1]). $A_s(R) \cdot K_s \cdot D$ представляет собой второй вклад, где K_s — параметр модели, связанный со смешиванием 2p- и 3s-состояний иона фтора. Поскольку такое p-s-смешивание определяется матричным элементом $\langle 2p_z|d_z|3s \rangle/|E_{3s}-E_{2p}|$, этот вклад пропорционален D.

Для оценки характера радиальной зависимости A_s , которая должна быть единой для всех кубических центров Gd³⁺ в изоструктурных кристаллах, необходимо исключить зависимость от *D*. Варьируя величины K_s и *n*

Рис. 2. Значения $A_s(R)$ для ближайших к Gd³⁺ ядер фтора в кубических примесных центрах в кристаллах CaF₂, CdF₂, SrF₂, PbF₂, BaF₂ и тригональном центре в BaF₂. Показана кривая, соответствующая найденной функциональной зависимости для кубических центров.

так, чтобы одна функция $A_s(R) = A_s/(1 + K_s \cdot D)$ описывала все пять отношений, получаем $K_s = -4.4(1)1/e$ Å, n = 3.0(2), при $A_s(R_0) = -3.62(6)$ MHz (e — заряд электрона по модулю).

Вид функции $A_s(R)$ для кубических примесных центров показан на рис. 2. Ее слабая степенная зависимость с n = 3, видимо, связана с тем, что константа A_s зависит от близких по величине, но разных по знаку слагаемых, связанных с различными электронными оболочками взаимодействующих ионов. Действительно, по оценкам [3,8] 4f-электроны вносят положительный вклад в A_s , а 5sи 5p-электроны — отрицательный, если учитывать их перекрывание с 2s-электронами F⁻, а учет 1s-оболочки приводит к положительным добавкам в изотропную константу [3,6,8,10]. Хотя все эти слагаемые имеют разные радиальные зависимости [8], их суммарное действие на малом диапазоне изменения расстояний может слабо зависеть от R.

Подтверждением адекватности выбранного описания A_s могут служить результаты аналогичного анализа изотропной константы ССТВ для кубических примесных центров Eu²⁺ в тех же кристаллах, где величина индуцированного дипольного момента D на ионах фтора определяется лишь смещениями лигандов [4]. Получено: $K_s = -4.2(2)1/e$ Å, n = 5.7(3), $A_s(R_0) = -3.94(6)$ MHz. Видно, что значения K_s , связанные с изменением электронной структуры F⁻ (т.е. с частичным заполнением 3*s*-состояния), близки для изоэлектронных примесных

ионов, что, на наш взгляд, подтверждает достоверность выбранной модели.

При анализе тригонального центра Gd^{3+} в BaF_2 сначала предположим, что расстояния до всех ближайших ионов фтора R = 2.431 Å (как в кубическом центре). Расчеты показывают, что дипольный момент, индуцированный на ядре типа 111, больше, чем на ближайших ядрах в кубическом центре, т. е. $\Delta D = D_{trig} - D_{cub} > 0$ (для $11\Delta D < 0$), причем такое неравенство сохраняется в диапазоне 2.44 > R > 2.38 Å. Это обусловлено тем, что в тригональном центре для ядер фтора с локальной симметрией C_s появляется d_x -компонента индуцированного дипольного момента, что приводит дополнительно к смещению $2p_x$ - и 3s-состояний F⁻. В линейном приближении по D для тригональных примесных центров в (2) в отличие от кубических центров должна использоваться величина $D = d_z + d_x$.

Сравним величины изотропных констант лля ядер типа 111 и 111 (см. табл. 2) со значением $A_s = -1.808(6) \text{ MHz}$ для кубического примесного центра в BaF₂ [4]. Согласно (2), для 111 должно быть $\Delta A_s = A_s(\text{trig}) - A_s(\text{cub}) > 0$ ($\Delta A_s < 0$ для 11). Мы же имеем $\Delta A_s > 0$ и практически одинаковые величины A_s (см. табл. 2) для обоих типов ядер фтора. Отметим также, что рассчитанные значения $A_s(R)$ для всех четырех типов ядер разбиваются на группы по два выше и ниже полученной для кубических примесных центров зависимости $A_{s}(R)$ (рис. 2) даже при одинаковых *R*. В рамках малых изменений только электронной структуры лигандов за счет их поляризации такой разброс значений $A_s(R)$ невозможно объяснить. Следовательно, существует по крайней мере еще один вклад в А_s, определяемый изменениями в электронной структуре Gd³⁺ при переходе от кубических к тригональным центрам. Аналогичный вывод можно сделать из сравнения констант ССТВ для ядер фтора, расположенных на оси С₃ (локальная симметрия C_{3v}), где характер химических связей тот же, что и в кубическом центре Gd^{3+} в BaF_2 .

С другой стороны, ясно, что Gd^{3+} тоже поляризован и имеет индуцированный электрический дипольный момент $D_1 \parallel C_3$, возникший из-за электрических полей компенсатора и несимметричного смещения лигандов. Это приводит к смешиванию электронных состояний Gd^{3+} [6,7,10–12], и в результате — к изменению неспаренной спиновой плотности на лигандах.

Из рис. 2 видно, что для ядер типа 111 и 111 соответствующие значения $A_s(R)$ расположены ниже и выше кривой, а $\Delta A_s = A_s(R)(\text{trig}) - A_s(R)(\text{cub})$, обусловенные поляризацией Gd^{3+} , имеют близкие по модулю, но разные по знаку значения, как и проекции D_1 вдоль осей связи. Оставшиеся два ядра фтора также однозначно связаны с направлением проекции D_1 , и их в соответствии со знаком ΔA_s можно конкретно связать с величинами изотропных констант (см. табл. 2). Поскольку мы рассматриваем вклады в A_s , можно сделать вывод о том, что неспаренная спиновая плотность электронов Gd^{3+} на ¹⁹F вдоль оси связи изменяется пропорционально

 $D_1 \cdot \cos \Theta$. Следовательно, для описания изотропных констант ближайших лигандов в тригональном примесном центре необходимо добавить к (2) член, учитывающий изменения электронной структуры Gd^{3+} за счет его поляризации

$$A_s = A_s(R) \cdot (1 + K_s \cdot D) + K'_s(R) \cdot D_1 \cdot \cos \Theta.$$
 (3)

Чтобы получить расстояния R до ближайших ядер фтора, необходимо сравнить расчетные значения A_s из (3) с экспериментальными. Для этого нужно знать параметр модели $K'_{s}(R)$, *D* и D_{1} . Эти величины оценивались вначале при условии, что все R = 2.431 Å. Оказалось, что при этом нет такого $K'_{s}(R)$, которое дает близкие к экспериментальным значения A_s одновременно для всех четырех типов ядер, но сравнение расчетных и экспериментальных величин показало, что должно быть $R(111) < R(\overline{1}\overline{1}\overline{1})$. Такое неравенство соответствует характеру возможного сдвига ближайших лигандов, поскольку F^k , приближаясь к примесному иону, несомненно будет сдвигать и ${}^{19}F(111)$ в ту же сторону. Варьируя R(111) и $R(11\bar{1})$, мы получили, что наилучшее согласие с экспериментом реализуется при R(111) = 2.388 Å и $R(11\bar{1}) = 2.408 \text{ Å}, K'_{s}(R) = -38.3(2) \cdot (R_0/R)^9 \text{ MHz/eÅ}.$

Индуцированные дипольные моменты D и D_1 рассчитывались в модели точечных зарядов и точечных диполей, источниками которых являлись как примесный ион и все анионы в сфере с радиусом ≥ 10 Å (центр сферы — ион, на котором определялся дипольный момент), так и ближайшие катионы. Положения анионов двух–четырех координационных сфер нам известны из эксперимента, положения ближайших катионов и далеких F⁻ принимались равными положениям в кубическом примесном центре [4]. При этом дипольный момнент на Gd³⁺ $D_1 = 0.0318$ eÅ, если $\alpha = 1$ и 0.87 Å³ для F⁻ в BaF₂.

Отметим, что определенные здесь расстояния до ближайших лигандов близки к тем, которые получены из суперпозиционной модели для констант начального расщепления и квадрупольного взаимодействия в тригональном центре 157 Gd³⁺ : BaF₂ [1].

Дополнительный член в (3), скорее всего, связан с частичным заселением пустой 5*d*-оболочки из-за смешивания четных и нечетных состояний поляризованного Gd³⁺ и пропорционален величинам матричных элементов вида $\langle 4f|D_1|5d\rangle/|E_{4f}-E_{5d}|$ [6,10–12], поскольку энергия E_{5d} , как известно, наименьшая для возбужденных состояний. Ясно, что этот механизм приведет к изменению неспаренной спиновой плотности электронов Gd³⁺ на лигандах в тригональном центре по сравнению с кубическим центром, следовательно, изменит ССТВ. Такой процесс для кубических центров впервые рассмотрен в теоретической работе [10], причем основной его причиной считался перенос электрона с лиганда на пустые 5*d*- и 6*s*-оболочки, вносящий вклад $\Delta A_s = -8 \,\mathrm{MHz}$ в изотропную константу для CaF₂:Gd³⁺. Поскольку в кубических центрах отсутствуют нечетные компоненты кристаллического поля, в [11,12] для смешивания состояний примеси вводилось нечетное электрическое поле виртуальной дырки, появляющейся на лиганде из-за такого переноса электрона. Расчет вклада в изотропную константу от поля виртуальной дырки на ¹⁹F с нашим параметром $K'_s(R)$ дает $\Delta A_s \ge 8$ МНz. Добавив к нему значение ΔA_s из [10], получим изменение в A_s , близкое к нулю. Отсюда можно сделать вывод, что обсуждаемый выше механизм практически не изменяет изотропные константы в кубических примесных центрах Gd³⁺ во флюоритах. Отметим, что в [10–12] изменения в электронной структуре лигандов никак не учитывались.

В работах [10–12] рассматривались также другие физические механизмы, влияющие на электронную структуру примесных центров при кубической локальной симметрии. Так, например, согласно [10–12], возможны изменения заселенностей 5*s*- и 6*s*-состояний примесных центов. В тригональном центре, обсуждаемом в данной работе, имеется прямое действие нечетного кристаллического поля на заселенности и этих состояний. Однако при этом должно было бы заметно измениться собственное электронно-ядерное взаимодействие ¹⁵⁷Gd в тригональном центре по сравнению с кубическим в BaF₂, тем не менее этого не наблюдается [1,4]. Следовательно, можно утверждать, что спиновая плотность на 5*s*- и 6*s*-состояниях заметно не меняется при переходе от кубического к тригональному примесному центру в BaF₂.

Для анализа анизотропных констант A_p ближайших ядер можно использовать выражения, аналогичные (3), где все индексы s следует заменить на p, поскольку механизмы изменения этих констант аналогичны обсужденным выше, Получено: $A'_p(R_0) = -1.94(5)$ MHz, $n = 16(1), K_p = -8(1) 1/eÅ$ (для кубических центров), $K'_{p} = -7(6) \,\mathrm{MHz} \, / \,\mathrm{eÅ}$. Из-за большой ошибки в K'_{p} анизотропные константы для четырех типов ближайших ядер фтора в тригональном центре описываются значительно хуже, чем для кубических центров. Видимо, это связано с грубостью модели, поскольку в А', должны быть вклады как от σ - так и от π -связей [3,6,8,10–12], мы же учли только изменения σ -связей, так как пока неясно, как должны меняться *п*-связи. Кроме того, возможно, надо учитывать вклад в А_р мультипольных поправок, связанных с отклонением от сферичности поляризованного Gd^{3+} в паре $Gd^{3+}-{}^{19}F$ [12].

Таким образом, в работе получены следующие результаты.

1) Анализ расстояний, рассчитанных из экспериментально определенных констант ССТВ тригонального центра $BaF_2:Gd^{3+}$, показал, что анионное окружение Gd^{3+} (первые четыре координационные сферы ионов фтора) можно разбить на две области относительно плоскости, проходящей через примесный ион и перпендикулярной главной оси симметрии примесного центра. В первой существуют большие смещения ¹⁹F вблизи компенсатора и Gd^{3+} , во второй, далекой от компенсатора, координаты ионов фтора те же, что и в кубическом центре. 2) Сравнение экспериментальных и рассчитанных величин A_s для ближайших к примесному центру ядер фтора указывает на то, что модель, описывающая константы ССТВ для кубических центров Gd³⁺ во флюоритах, может быть успешно применима и к тригональному центру, если учесть вклад в A_s , связанный с изменением электронной структруры примеси за счет ее поляризации нечетным электрическим полем, создаваемым окружением.

3) Определены расстояния до ядер фтора первой координационной сферы, которые близки к тем же величинам, оцененным в суперпозиционной модели для параметров начального расщепления и квадрупольного взаимодействия в тригональном центре ¹⁵⁷Gd³⁺ в BaF₂.

4) Равенство в пределах экспериментальных погрешностей констант собственного электронно-ядерного взаимодействия для изотопа ¹⁵⁷Gd в кубическом и тригональном центрах в BaF₂ указывает на то, что поляризация Gd³⁺ в тригональном центре не приводит к заметному изменению спиновых плотностей любых *s*-состояний примесного иона по сравнению с кубическим центром.

Список литературы

- [1] А.Д. Горлов, А.П. Потапов. ФТТ 42, 1, 49 (2000).
- [2] D.J. Newman, W. Urban. Adv. Phys. 24, 2, 793 (1973).
- [3] J.M. Baker. J. Phys. C: Solid State Phys. 12, 19, 4093 (1979).
- [4] А.Д. Горлов, В.Б. Гусева, А.Ю. Захаров, А.И. Рокеах, В.А. Чернышев, С.Ю. Шашкин. ФТТ 40, 12, 2172 (1998).
- [5] L.A. Boatner, R.V. Reynolds, M.M. Abraham. J. Chem. Phys. 57, 5, 1248 (1970).
- [6] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Т. 1. Мир, М. (1972). 651 с.
- [7] С.А. Альтшуллер, Б.М. Козырев. Электронный парамагнитный резонанс. Наука, М. (1972). 672 с.
- [8] J. Casas, P. Stydzinski, J. Andriessen, J.Y. Buzare, J.C. Fayet, J.M. Spaeth. J. Phys. C: Solid State Phys. 19, 34, 6767 (1986).
- [9] О.В. Назарова, Т.И. Санадзе. Сообщения АН ГССР, 87, 2, 329 (1977).
- [10] О.А. Аникиенок, М.В. Еремин. ФТТ 23, 6, 1792 (1981).
- [11] O.A. Anikienok, M.V. Eremin, M.L. Falin, A.L. Konkin, V.P. Meiklyar. J. Phys. C: Solid State Phys. 17, 15, 2813 (1984).
- [12] О.А. Аникиенок, М.В. Еремин, О.Г. Хуцишвили. ФТТ 28, 6, 1690 (1986).