Невзаимное двупреломление света в борацитах $R_3B_7O_{13}X$ (R = Co, Cu, Ni, X = I, Br)

© Б.Б. Кричевцов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: boris@krich.ioffe.rssi.ru

(Поступила в Редакцию 26 мая 2000 г.)

В кубической (класс симметрии T_d) параэлектрической фазе борацитов $R_3B_7O_{13}X$ (R = Co, Cu, Ni; X = I, Br) на длине волны $\lambda = 633$ nm изучены полевые и угловые зависимости линейного по магнитному полю *B* невзаимного двупреломления (НД), обусловленного проявлением магнитоиндуцированной пространственной дисперсии. Показано, что в кристаллах с различными 3*d*-ионами и ионами галогенов НД обладает одинаковой анизотропией. Соотношение между параметрами *A* и *g* определяющими анизотропию НД, *A* = 2*g*, показывает, что микроскопическим механизмом НД является проявление магнитоэлектрической восприимчивости второго порядка на оптических частотах.

Работа выполнена при поддержке РФФИ (проект № 99-02-18028) и программы "Фундаментальная спектроскопия".

Тензор диэлектрической проницаемости $\varepsilon_{ii}(\omega, \mathbf{B}, \mathbf{k})$ нецентросимметричных диа- или парамагнетиков в оптическом диапазоне частот может содержать вклады в эрмитовскую симметричную часть, билинейные по компонентам внешнего магнитного поля В и волнового вектора света **k**: $\delta \varepsilon_{ij} = \gamma_{ijkl} B_k k_1$ [1,2]. Эти вклады описывают оптические явления магнитоиндуцированной пространственной дисперсии, одним из которых является невзаимное (гиротропное) двупреломление света. Невзаимное двупреломление (НД) до настоящего времени наблюдалось в диамагнетике β -LiIO₃ (класс симметрии C_6) [3], магнитных полупроводниках $Cd_{1-x}Mn_xTe$, Zn_{1-x}Mn_xTe [4,5], полупроводниках CdS, CdSe (класс C_{6v}) [6,7], CdTe, ZnTe, GaAs (класс T_d) [8,9]. Микроскопические механизмы НД в полупроводниках и магнитных полупроводниках рассмотрены в [4-10]. Как следует из этих работ, основной причиной, приводящей к существованию большого по величине НД вблизи края зоны полупроводниковых кристаллов, является присутствие линейных и билинейных по **B** и **k** вкладов в дисперсию зоны проводимости и валентных зон, между которыми происходят виртуальные оптические переходы (межзонный механизм), или в дисперсию экситонных ветвей (экситонный механизм). Очевидно, что эти механизмы отсутствуют в том случае, если НД обусловлено не межзонными или экситонными, а локальными оптическими переходами, когда возбуждение локализовано на ионе и не может распространяться по кристаллу. Этого можно ожидать, например, для оптических *d*-*d*-переходов в ионах переходных металлов или f-f-переходов в редкоземельных ионах. Недавно сообщалось [11] о наблюдении НД в бораците $Co_3B_7O_{13}I$ (класс T_d) в области энергий, соответствующих оптическому переходу внутри 3d-оболочки иона $\mathrm{Co}^{2+}{}^{4}A_{2}({}^{4}F) \rightarrow {}^{4}E({}^{4}P)$ в районе E ~ 2.1 eV, где E — энергия фотона. В этой спектральной области НД имеет резонансный характер и его дисперсия описывается S-образной зависимостью. Микроскопические механизмы НД в случае локальных оптических переходов могут определяться: 1) проявлением магнитоэлектрической восприимчивости второго порядка на оптических частотах (магнитоэлектрический механизм) и 2) проявлением квадрупольного момента, индуцированного электрическим полем света в присутствии магнитного поля В (квадрупольный механизм) [11]. Магнитоэлектрическая восприимчивость второго порядка описывает появление индуцированного электрическим (магнитным) полем световой волны $\mathbf{E}^{\omega}(\mathbf{H}^{\omega})$ магнитного момента $\delta \mathbf{M}^{\omega}$ (электрической поляризации $\delta \mathbf{P}^{\omega}$), осциллирующего с частотой света ω в фазе с полем $E^{\omega}(\mathbf{H}^{\omega})$. Появление такого магнитного момента возможно в нецентросимметричных кристаллах в присутствии внешнего магнитного поля В и описывается полярным *i*-тензором третьего ранга $C_{ijk}(\omega)$: $\delta M_i^{\omega} = C_{ijk}(\omega) E_i^{\omega} B_k$. Поскольку магнитный момент является аксиальным с-вектором, он не может быть индуцирован электрическим полем в центросимметричных кристаллах и в отсутствии внешнего магнитного поля. Ответственный за НД квадрупольный момент Q_{ii}^{ω} индуцированный полем \mathbf{E}^{ω} в присутствии внешнего поля **В**, осциллирует со сдвигом фаз 90° относительно поля \mathbf{E}^{ω} и описывается тензором четвертого ранга $a'_{ijkl}(\omega)$: $Q_{ii}^{\omega} = (1/\omega) a_{iikl}^{\prime}(\omega) \dot{E}_k^{\omega} B_1$. Оба механизма могут вносить вклад в тензор γ_{iikl} , определять величину и соотношение между параметрами А и g этого тензора в классе симметрии T_d . Как показано в [11], в этом классе магнитоэлектрический механизм приводит к точному соотношению между параметрами A = 2g, а квадрупольный, описываемый тензором более высокого ранга, — к произвольному соотношению между ними. Экспериментально полученное значение A/g = 1.9 в Co₃B₇O₁₃I дало возможность предположить, что НД в этом кристалле обусловлено в основном магнитоэлектрическим механизмом [11]. Тем не менее прямые доказательства проявления именно магнитоэлектрического механизма отсутствовали, по-

Таблица 1. Температура сегнетоэлектрического фазового перехода T_c температура перехода в магнитоупорядоченное состояние T_N и температура Кюри T_c^m в исследованных борацитах [14]

	CoI	CuBr	NiBr
$T_c, \mathbf{K} T_N, \mathbf{K} T_c^m, \mathbf{K}$	200	224	398
	38	24	40
	80	47	-31

скольку в принципе соотношение A/g = 2 не запрещено и для квадрупольного механизма, для которого оно может быть произвольным. Строгое доказательство преобладания магнитоэлектричского механизма может быть основано на том факте, что для него соотношение A = 2g (в классе T_d) следует только из симметрийных соображений и поэтому должно выполняться для любых 3*d*-ионов и любых оптических переходов в этих ионах. Цель настоящей работы — экспериментальное изучение полевых и угловых зависимостей НД в борацитах с различными 3*d*-ионами и определение соотношения между параметрами A и g.

1. Эксперимент

Метод определения параметров А и g для кристаллов класса T_d описан в [4,5]. Параметры A и g определялись из анализа угловых зависимостей НД при распространении света вдоль кристаллографического направления типа [110] и ориентации магнитного поля В в перпендикулярной этому направлению плоскости типа (110). Экспериментально измерялись полевые зависимости поворота плоскости поляризации а света, прошедшего через кристалл, помещенный в магнитное поле, и пластинку $\lambda/4$ при различных углах θ между направлением магнитного поля и кристаллографическим направлением типа [001]. НД обусловливает линейные по магнитному полю зависимости $\alpha(B)$, причем величина и знак $d\alpha/dB$ зависят от угла θ . Эксперименты проводились в геометрии Е || В при параллельной ориентации поляризации падающего света Е и магнитного поля В и в геометрии E45B, когда угол между Е и В составлял 45°. В обоих случаях главное направление пластинки $\lambda/4$ было параллельно **E**. Как показано в [4,5], в первом случае зависимости $d\alpha/dB(\theta)$ описываются выражением $a\cos\theta+b\cos3\theta$, а во втором — $a'\sin\theta+b'\sin3\theta$. Анализ угловых зависимостей $d\alpha/dB(\theta)$ позволял определить параметры A и g с точностью ~ 10%. В данной работе проводились исследования НД в борацитах Co₃B₇O₁₃I, Cu₃B₇O₁₃Br, Ni₃B₇O₁₃Br на длине волны $\lambda = 633$ mm. Чувствительность поворотов плоскости поляризации составляла $\delta\alpha \approx 10''$. Измерения проводились в полях до ±1.5 T в температурном диапазоне 294–470 K.

Семейство борацитов включает в себя кристаллы с общей формулой R₃B₇O₁₃X, где R — ион двухвалентного металла, Х — ион галогена. В параэлектрическом состоянии при T > T_c, где T_c — температура Кюри, их структура описывается пространственной группой T_d^5 , точный класс T_d [12,13]. Ионы металла в элементарной ячейке занимают 24 с-позиции с точечной симметрией Ближайшее окружение *R*²⁺ представляет собой *S*₄. искаженный октаэдр, образованный двумя ионами галогена X⁻ и четырьмя ионами кислорода О²⁻. Ионы кислорода, находящиеся на диагоналях квадрата, сдвинуты из базисной плоскости вдоль оси z на величину $\pm \delta$ так, что точечная симметрия комплекса D_{2d} . При *T* < *T_c* в борацитах происходит фазовый переход первого рода в сегнетоэлектрическое состояние. Симметрия кристалла понижается до $C_{2\nu}^5$ [12,13]. При $T < T_N$ в борацитах происходит переход в антиферромагнитное состояние со слабым ферромагнетизмом [14]. Температура Кюри Т_с сегнетоэлектрического перехода, температура перехода в магнитоупорядоченное состояние T_N , соответствующая магнитная температура Кюри Т_с^m для исследованных в данной работе кристаллов приведены в табл. 1. Магнитные и магнитоэлектрические свойства борацитов исследованы в [14,15]. Спектры поглощения борацитов изучались в [16,17]. В области 0.3-3 eV они состоят из нескольких полос различной интенсивности, которые обусловлены переходами между состояниями внутри 3*d*-оболочки иона металла. Положение наиболее сильных полос поглощения, расположенных вблизи $E = 1.96 \,\mathrm{eV} \ (\lambda = 633 \,\mathrm{nm}),$ величина коэффициента поглощения в максимуме α^m и идентификация перехода для исследованных борацитов приведены в табл. 2.

Таблица 2. Положение некоторых полос поглощения E_0 , величина коэффициента поглощения в максимуме α^m и тип перехода в исследованных борацитах [16,17]

Борацит	СоІ	CuBr	NiBr
Переход E_0 , eV α^m , cm ⁻¹ Переход	${}^{4}A_{2}({}^{4}F) \rightarrow {}^{4}E({}^{4}P)$ 2.1 1400 ${}^{4}A_{2}({}^{4}F) \rightarrow {}^{4}A_{2}({}^{4}P)$ 2.7	${}^{2}B_{1}({}^{2}D) \rightarrow {}^{2}E({}^{2}D)$ 1.5 3000 ${}^{2}B_{1}({}^{2}D) \rightarrow {}^{2}B_{2}({}^{2}D)$	${}^{3}A_{2}({}^{3}F) \rightarrow {}^{3}E^{b}({}^{3}P)$ 2.9 2500 ${}^{3}A_{2}({}^{3}F) \rightarrow {}^{3}E^{a}({}^{3}F)$
E_0, eV α^m, cm^{-1}	2.7 1300	1.2 2500	600

Образцы борацитов в виде пластинок размерами $2 \times 2 \,\mathrm{mm^2}$ вырезались из буль, выращенных в ФТИ АН СССР по методу, описанному в [18]. Толщина пластинок составляла $d \approx 90\,\mu\mathrm{m}$ для борацита CoI, $d \approx 800\,\mu{
m m}$ для борацита CuBr и $d \approx 900\,\mu{
m m}$ для борацита NiBr. Образцы шлифовались и полировались алмазными порошками. Ориентация образцов проводилась с помощью рентгенографического анализа и по огранке буль. Величина спонтанного двупреломления, связанного с напряжениями и дефектами, возникающими в процессе роста, в борацитах CoI, CuBr, NiBr составляла соответственно $\Delta n = 6.7 \cdot 10^{-6}$, $7.0 \cdot 10^{-6}$, $1.2 \cdot 10^{-5}$ и не проявлялась на зависимостях $\alpha(B)$. Для сравнения во всех образцах измерялся эффект Фарадея. Измерения эффекта Фарадея проводились в продольном магнитном поле величиной до ± 0.05 Т.

2. Результаты эксперимента

Во всех исследованных борацитах наблюдались линейные по **B** зависимости $\alpha(B)$ в геометриях $E \parallel B$ и E45B. Невзаимность индуцированного двупреломления проверялась путем поворотов кристалла вокруг оси, параллельной **B**, и оси, перпендикулярной **B** и **k**. На рис. 1 представлены полевые зависимости $\alpha(B)$ в бораците CuBr в обеих геометриях. На рис. 2, 3 представлены угловые зависимости $d\alpha/dB(\theta)$ в борацитах CoI и CuBr в плоскости типа (110) в геометриях $E \parallel B$ и E45B. В соответствии с теорией угловые зависимости

Рис. 1. Полевые зависимости $\alpha(B)$ в Cu₃B₇O₁₃Br в геометриях *Е* || *B* (*a*) и *E*45*B* (*b*) при различных значениях угла θ .

описываются гармониками первого и третьего порядков. Экстремумы $d\alpha/dB$ наблюдаются в геометрии $E \parallel B$ при $\theta = N \cdot 60^{\circ}$ (N = 0, ..., 5), а в геометрии E45B — при $\theta = 30^{\circ} + N \cdot 60^{\circ}$. Напомним, что в геометрии $E \parallel B$ при $\theta = 0^{\circ} d\alpha/dB$ определяется только параметром g, а в геометрии E45B при $\theta = 90^{\circ}$ — комбинацией 3A + 2g [4,5].

Рис. 2. Угловые зависимости $d\alpha/dB$ в бораците CoI в геометриях $E \parallel B$ и E45B.

Рис. 3. Угловые зависимости $d\alpha/dB$ в бораците CuBr в геометриях $E \parallel B$ и E45B.

Рис. 4. Угловые зависимости $d\alpha/dB$ в бораците NiBr в геометриях $E \parallel B$ и E45B при T = 450 K.

НД в исследованных в данной работе образцах борацита СоI и по величине и по характеру анизотропии соответствует результатам [11]. Как показывают рис. 2, 3, величина НД в бораците CuBr меньше, чем бораците CoI. Если в CoI-бораците величина $d\alpha/dB$ в экстремумах достигает $d\alpha/dB \approx 2^{\circ}$ /cmT, то в CuBr-бораците она составляет $d\alpha/dB \approx 0.6^{\circ}$ /cmT. Тем не менее характер анизотропии, т.е. соотношения между величинами $d\alpha/dB$ при углах $\theta = 0, 180^{\circ}$ и $\theta = 60, 120^{\circ}$ в геометрии $E \parallel B$, а также при $\theta = 90, 270^{\circ}$ и $\theta = 30, 150^{\circ}$ в геометрии E45B, в этих борацитах одинаковы.

На рис. 4 представлены угловые зависимости $d\alpha/dB$ в бораците NiBr при T = 450 K. Величина НД в этом бораците $d\alpha/dB \approx 0.2^{\circ}$ /cmT существенно меньше, чем в борацитах CoI и CuBr. Тем не менее, как видно из рис. 4, и в бораците NiBr НД обнаруживает тот же характер анизотропии. Таким образом, зависимости, представленные на рис. 2–4, показывают, что, если величина НД существенным образом зависит от типа 3*d*-иона, входящего в структуру борацита, то анизотропия НД в кристаллах с различными ионами металла и различными ионами галогенов одна и та же.

Отметим, что зависимости $\alpha(B)$ в геометрии *E*45*B* во всех исследованных кристаллах линейны. Это свидетельствует о том, что НД на исследованной длине волны существенно больше, чем квадратичное по магнитному полю двупреломление, связанное с эффектом Коттона– Мутона. Таким образом, в области прозрачности борацитов их магнитооптические свойства определяются двумя невзаимными явлениями: эффектом Фарадея и невзаимным двупреломлением.

3. Обсуждение результатов

Из анализа угловых зависимостей НД были получены величины параметров A и g тензора γ_{iikl} . В расчетах использовалась величина показателя преломления *n* = 1.9. В табл. 3 приведены величины максимального значения НД (геометрия $E45B \ \theta = 90^{\circ}$), параметров А и g, их отношения, а так же величины постоянной Верде в исследованных кристаллах. Как видно из табл. 3, величина НД и эффекта Фарадея не коррелируют между собой. Действительно, величина НД в бораците CoI на порядок больше, чем в бораците NiBr, в то время как величина эффекта Фарадея в них отличается примерно в 3 раза. Величина эффекта Фарадея в бораците CuBr почти в 40 раз меньше, чем в бораците CoI и на порядок меньше, чем в бораците NiBr. Напротив, НД в CuBr-бораците всего в 4 раза меньше, чем в бораците CoI и в 3 раза больше, чем в бораците NiBr. Отсутствие корреляции свидетельствует о различии микроскопических механизмов этих явлений. Как известно, эффект Фарадея обусловлен расщеплением энергетических уровней в магнитном поле и проявлением матричных элементов оптических переходов типа $\operatorname{Im}(d_{ab}^{i}d_{ba}^{i})$, где **d** — оператор дипольного момента перехода, $|a\rangle$ и $|b\rangle$ — волновые функции основного и возбужденного состояний [19,20]. НД также связано с расщеплением уровней в магнитном поле, но проявлением матричных элементов другого типа: $\operatorname{Re}(d_{ab}^{i}m_{ba}^{i})$ в случае магнитоэлектрического механизма и $\operatorname{Im}(d_{ab}^{i}Q_{ba}^{jk})$ в случае квадрупольного механизма [11], где **m** — оператор магнитного момента, Q^{ik} оператор квадрупольного момента. Поскольку отношение параметров A/g = 2 (табл. 3) выполняется для различных 3d-ионов, имеющих различную электронную конфигурацию $Co^{2+}(3d^7)$, $Ni^{2+}(3d^8)$, $Cu^{2+}(3d^9)$, НД в основном определяется именно магнитоэлектрическим механизмом.

Как показано в [11], величина НД, обусловленная магнитоэлектрической восприимчивостью второго порядка на оптических частотах, определяется выражением

$$\partial \alpha / \partial B = N \sum_{b,ijt} \operatorname{Re}(d^{i}_{a_{t}b_{t}}m^{j}_{b_{t}a_{y}}) Z_{ab} \omega_{ab} \mu_{B} g_{t} / k(T - T^{m}_{c}), (1)$$

где N — параметр, зависящий от числа 3*d*-ионов в единице объема и угла *f* между кристаллографическими осями X, Y, Z и локальными осями

Таблица 3. Максимальная величина $d\alpha/dB$, параметры *A* и *g*, отношение A/g и постоянная Верде *V* в исследованных кристаллах на длине волны $\lambda = 633$ nm

Борацит	CoI	CuBr	NiBr
$d\alpha/dB,^{\circ}/cmT$ $A, 10^{-8}\mu m/T$ $g, 10^{-8}\mu m/T$ A/g V°/cmT	2.5 16.6 8.7 1.9	0.62 4.2 2.2 1.9	0.2 1.35 0.67 2.0

79

кислородо-галогенного октаэдра x, y, z $(f \sim 24^{\circ}), Z_{ab} = (\omega_{ab}^2 - \omega^2)/[(\omega_{ab}^2 - \omega^2)^2 + \Gamma_{ab}^2\omega^2], \omega_{ab} -$ резонансная частота оптического перехода, Γ_{ab} — параметр затухания, g_t — величина g-фактора основного состояния при направлении магнитного поля В вдоль локальной оси октаэдра $\mathbf{t}(x, y, z), |a_t\rangle, |b_t\rangle$ — волновые функции основного и возбужденного состояний при **B** \parallel **t**, μ_B магнетон Бора, k — постоянная Больцмана. Поскольку локальное окружение 3d-ионов в борацитах имеет симметрию D_{2d} , магнитоэлектрический тензор $G_{ijk}(\boldsymbol{\omega})$ содержит три независимых компоненты и индексы *ijt* принимают значения угх, гху, хуг. Проведем, пользуясь (1), сравнение величин матричных элементов $\operatorname{Re}(d_{ab}^{i}m_{ba}^{i})$ для различных оптических переходов в одноосцилляторной модели. Для этого предположим, что НД на длине волны $\lambda = 633 \,\mathrm{nm}$ определяется ближайшей к ней сильной полосой поглощения. В случае борацита CoI это переход ${}^{4}A_{2}({}^{4}F) \rightarrow {}^{4}E({}^{4}P)$ при $E_{0} = 2.1 \,\mathrm{eV}$, для борацита CuBr — ${}^{2}B_{1}({}^{2}D) \rightarrow {}^{2}E({}^{2}D)$ при $E_{0} = 1.5$ eV и для NiBr-борацита переход ${}^{3}A_{2}({}^{3}F) \rightarrow {}^{3}E^{b}({}^{3}P)$ при $E_0 = 2.9 \,\mathrm{eV}$ (табл. 2). Величину параметра Γ_{ab} можно оценить из спектров поглощения [16,17] $\Gamma_{ab} \sim 0.1 \, \text{eV}.$ Пренебрежем анизотропией g-фактора, т.е. заменим в (1) g_t на $g = (g_{\perp} + g_{\parallel})/2$, и введем обозначение $\operatorname{Re}(d_{ab}m_{ba}) \equiv \operatorname{Re}(d_{axbx}^y m_{bxax}^z + d_{ayby}^z m_{byay}^x + d_{azbz}^x m_{bzaz}^y)$. Величина *g*-фактора основного состояния ионов $Co^{2+} g = 4.2$, а ионов Cu^{2+} , Ni^{2+} g = 2.2 [21,22]. Подставляя эти величины, а также значения $d\alpha/dB$ (табл. 3) и T_c^m (табл. 1) в (1) получаем, что величина $\text{Re}(d_{ab}^i m_{ba}^j)$ для перехода, ответственного за НД, в CuBr-бораците в 1.8 раз больше, чем в бораците CoI, а в NiI-бораците составляет 0.8 этой величины. Приведенная грубая оценка показывает, что для различных оптических переходов величины матричных элементов $\operatorname{Re}(d_{ab}^{i}m_{ba}^{i})$ могут отличаться в несколько раз, но тем не менее они являются величинами одного порядка. Более точная информация о величине и знаке матричных элементов $\operatorname{Re}(d_{ab}^{i}m_{ba}^{J})$ может быть получена по спектральным измерениям НД или невзаимного линейного дихроизма.

Таким образом, основным механизмом, определяющим величину и анизотропию НД в борацитах, является проявление магнитоэлектрической восприимчивости второго порядка на оптических частотах. Величина и знак магнитоэлектрической восприимчивости определяется матричными элементами оптических переходов $\operatorname{Re}(d_{ab}^{i}m_{ba}^{j})$, которые могут быть получены из спектральных измерений НД или невзаимного линейного дихроизма. Величина НД в борацитах ~ 2°/стТ сравнима с наблюдающейся в полупроводниках и магнитных полупроводниках вблизи края зоны [4,5,9] и может быть легко измерена с помощью современной поляриметрической техники. Отметим, что полученная в данной работе величина НД в бораците CuBr $d\alpha/dB = 0.6^{\circ}/\text{cmT}$ всего в 4 раза меньше, чем величина эффекта Фарадея (V = 2.4°/стТ). Отсутствие корреляции между величиной НД и эффекта Фарадея в различных борацитах показывает, что эти явления имеют совершенно разную дисперсию. Это в свою очередь свидетельствует о различном соотношении (и по величине и по знаку) между матричными элементами типа $\text{Im}(d^i_{ab}d^j_{ba})$ и $\text{Re}(d^i_{ab}m^j_{ba})$ для различных оптических переходов и между состояниями внутри 3*d*-оболочки ионов металла.

Автор выражает благодарность В.Н. Гридневу за полезные обсуждения, Г.Т. Андреевой за монокристаллы борацитов и Н.Ф. Картенко за проведение рентгеноструктурных исследований.

Список литературы

- D.L. Portigal, E.J. Burstein. Phys. Chem. Sol. 32, 3, 603 (1968).
- [2] В.М. Агранович, В.Л. Гинзбург. Кристаллооптика с учетом пространственной дисперсии и теория экситонов. Наука, М. (1979). 432 с.
- [3] В.А. Маркелов, М.А. Новиков, А.А. Туркин. Письма в ЖЭТФ 25, 6, 406 (1966).
- [4] B.B. Krichevtsov, R.V. Pisarev, A.A. Rzhevsky, V.N. Gridnev, H.-J. Weber. Phys. Rev. B57, 3, 14 611 (1998).
- [5] Б.Б. Кричевцов, Р.В. Писарев, А.А. Ржевский, В.Н. Гриднев, Х.-Ю. Вебер. ЖЭТФ 114, 3, 1018 (1998).
- [6] Е.Л. Ивченко, В.П. Кочерешко, Г.В. Михайлов, И.Н. Уральцев. Письма в ЖЭТФ 37, 164 (1983); Phys. Stat. Sol. B121, 221 (1984).
- [7] В.П. Кочерешко, Г.В. Михайлов, И.Н. Уральцев. ФТТ 25, 769 (1983).
- [8] О.В. Гоголин, В.А. Цветков, Е.Г. Цицишвили. ЖЭТФ 87, 3, 1038 (1984).
- [9] Б.Б. Кричевцов, Р.В. Писарев, А.А. Ржевский, Х.-Ю. Вебер. Письма в ЖЭТФ 69, 7, 514 (1999).
- [10] Е.Г. Цицишвили. ФТП 20, 4, 650 (1986).
- [11] B.B. Krichevtsov, A.A. Rzhevsky, H.-J. Weber. Phys. Rev. B61, 15, 10 084 (2000).
- [12] R.J. Nelmes. J. Phys. C7, 9, 3840 (1974).
- [13] R.J. Nelmes, F.R. Thornley. J. Phys. C7, 9, 3855 (1974).
- [14] G. Quezel, H. Schmid. Sol. Stat. Commun. 6, 7, 447 (1968).
- [15] M. Clin, J.-P. Rivera, H. Schmid. Ferroelectrics 108, 213 (1990).
- [16] R.V. Pisarev, V.V. Druzhinin, S.D. Prochorova, N.N. Nesterova, G.T. Andreeva. Phys. Stat. Sol. 35, 1, 145 (1969).
- [17] Н.Н. Нестерова. Исследование электронной конфигурации 3*d*-ионов в полях тетрагональной симметрии и влияние сегентоэлектрического упорядочения на электронные спектры борацитов. Канд. дисс. Л. (1974). 162 с.
- [18] H. Schmid, H. Tippman. J. Cryst. Growth 46, 723 (1979).
- [19] L.D. Barron. Molecular Ligth Scattering and Optical Activity. Cambridge University Press, Cambridge (1980). 408 p.
- [20] A.K. Zvezdin, V.A. Kotov. Modern Magnetooptics and Magnetooptical Materials. Institute of Physics Publishing. Bristol (1997). 386 p.
- [21] В. Лоу. Парамагнитный резонанс в твердых тела. Изд-во иностр. лит., М. (1961). 242 с.
- [22] M.P. Petrov, S.A. Kizhaev, G.T. Andreeva, G.A. Smolensky. J. Phys. Soc. Japan 28, Suppl. S128 (1970).