О форме *К*-краев поглощения железа в моноферритах со структурой шпинели Me(Mg, Mn, Ni, Zn)Fe₂O₄

© Н.Ю. Сафонцева, И.Я. Никифоров

Донской государственный технический университет, 344010 Ростов-на-Дону, Россия E-mail: root@sintez.rnd.su

(Поступила в Редакцию 28 февраля 2000 г. В окончательной редакции 18 мая 2000 г.)

С использованием программы FEFF8 произведен расчет XANES *K*-краев поглощения железа в чистом металле и в моноферритах стехиометрического состава MgFe₂O₄, MnFe₂O₄, NiFe₂O₄, ZnFe₂O₄. Подтверждено изменение энергетического положения Fe *K*-краев при переходе от чистого железа к моноферритам, обнаруженное в эксперименте. Показано, что направление такого смещения одинаково в ферритах со структурой нормальной шпинели (MnFe₂O₄, ZnFe₂O₄) и обращенной шпинели (MnFe₂O₄), однако численные значения теоретических сдвигов Fe *K*-краев хорошо согласуются с экспериментальными только в нормальных шпинелях.

Настоящая работа посвящена исследованию влияния типов металлических ионов и их расположения в тетраэдрических и октаэдрических позициях шпинельной структуры Me(Mg, Mn, Ni, Zn)Fe₂O₄ на форму и энергетическое положение K-края поглощения железа. XANESособенности спектров поглощения рассчитывались с помощью программы FEFF8 [1,2], открывающей новые возможности по сравнению с предыдущими версиями, такие как: 1) построение самосогласованных кристаллических потенциалов всех атомов, входящих в каждое соединение; 2) использование полных многократных путей рассеяния в пределах выбранного размера кластера; 3) построение К-краев поглощения с различной ориентацией спина у поглощающего атома железа. Дополнительные возможности FEFF8 многократно увеличивают время расчетов даже при использовании самых современных компьютеров, поэтому размеры кластеров пришлось ограничить количеством атомов, дающих удовлетворительный результат при сравнении с экспериментом.

1. Методика расчета

Кристаллическая структура шпинелей, имеющих пространственную группу O_h^7 -F3dm, представляет плотную гранецентрированную кубическую упаковку атомов аниона, образующих тетраэдрические и октаэдрические пустоты, частично занимаемые катионами [3,4].

Ферриты MnFe₂O₄ и ZnFe₂O₄ имеют структуру нормальной шпинели, так как катионы марганца или цинка располагаются в тетраэдрических, а катионы железа — в октаэдрических позициях. Таким образом, на формальную единицу AB₂O₄ должен приходиться один катион Me(Mn,Zn) в тетраузле A и два катиона железа в октаузле B. Однако в феррите MnFe₂O₄ восемь тетраэдрических положений занимают не только ионы Mn²⁺, но и Fe³⁺ в соотношении 0.8Mn²⁺+0.2Fe³⁺ в расчете на один A-узел [5]. Соответственно 16 октаэдрических узлов занимают не только ионы железа Fe³⁺, но и марганца Mn^{2+} в соотношении $0.2Mn^{2+}+1.8Fe^{3+}$ в расчете на оба *B*-узла. В связи с этим в настоящем расчете вместо формулы $MnFe_2O_4$ использовалась формула $Fe_xMn_{1-x}[Fe_yMn_{2-y}]O_4$, где *x* и *y* — концентрации катионов в узлах *A* и *B* соответственно.

Ферриты MgFe₂O₄ и NiFe₂O₄ имеют структуру обращенной шпинели, в которой половина ионов железа находится в тетраузлах, а другая половина и все ионы Me(Mg, Ni) — в октаузлах. Поскольку ферриты Me(Mn, Mg, Ni)Fe₂O₄ являются антиферромагнетиками, то магнитные моменты ионов металлов, расположенных в А-узлах, принимались параллельными друг другу, но противоположными магнитным моментам атомов, находящихся в В-узлах. Исключением является шпинель ZnFe₂O₄, не обладающая магнитными свойствами из-за наличия в ней немагнитного иона цинка, что способствует антипараллельной ориентации спинов ионов железа, расположенных в одной октаэдрической подрешетке. Постоянные решеток а, а также величины анионных параметров и, учитывающих смещение атомов кислорода из своих идеальных позиций в направлении [111], приведены в таблице. Таким образом, в расчетах К-краев поглощения железа в Me(Mn, Ni)Fe₂O₄ использовались кластеры, состоящие из шести типов атомов: 1) центральный поглощающий атом железа с определенной ориентацией спинового магнитного момента; 2, 3) ионы железа с двумя противоположными ориентациями спина, расположенные в соответствующих координационных сферах; 4,5) ионы Me(Mn, Ni), также учитывающие разную ориентацию магнитных моментов; 6) ионы кислорода. Соответственно в шпинелях Me(Mg, Zn)Fe₂O₄ кластер содержал только пять типов атомов, так как магний и цинк не обладают магнитными свойствами.

ХАNES-расчеты Fe K-спектров всех исследуемых ферритов проводились в рамках единой расчетной модели.

1) Максимальный размер кластера (N_{max}) не превышал 1000 атомов.

Материал		α -Fe	MnFe ₂ O ₄	ZnFe ₂ O ₄	MgFe ₂ O ₄	NiFe ₂ O ₄
<i>a</i> , Å [5]		2.86	8.512	8.442	8.364	8.340
<i>u</i> [4]		_	0.385	0.385	0.381	0.381
$\Delta E, \mathrm{eV}$	[5] настоящая работа	0 0	$8.3 \pm 0.5 \\ \sim 8$	$7.3 \pm 0.6 \\ \sim 7$	$6.3 \pm 0.3 \\ \sim 9$	$6.0\pm0.4\ \sim 9$
$q_{ m Fe}/e\equiv n$	$n \uparrow n \downarrow^*$	0.009 0.004	0.203 0.042	0.231 0.009	0.234 0.034	0.263 0.04
N _{max}	$ \begin{array}{l} \operatorname{Fe}_t \\ \operatorname{Fe}_o \\ \alpha \operatorname{-Fe} \end{array} $	- - 965	_ 981	_ 981	984 974	984 974
RPATH, Å	Fe_t Fe_o α -Fe	_ 14.02	13.78	13.66	13.62 13.48	13.58 13.44
N _{FMS}	Fe_t Fe_o α -Fe	_ _ 27	27	27	29 27	29 27
R _{FMS} , Å	Fe_t Fe_o α -Fe	 4.01	3.74	3.71	3.49 3.66	3.48 3.65
L _{Fe_T-O} , Å L _{Fe_o-O} , Å		-	2.05	2.03	1.90 2.04	1.89 2.04
КЧ	Fe _o	_	6–O 6–Fe 6–Mn	6–O 6–Fe 6–Zn	6–O 2–Fe, 4–Mg 6–Fe	6–O 2–Fe, 4–Ni 6–Fe
КЧ	Fe _t	_	-	-	4–O 6–Fe 6–Mg	4–O 6–Fe 6–Ni
a-b, eV	[5] настоящая работа	23.5 24.1	12.1 11.8	17.5 18.8	15.2 16.8	16.5 16.0

Постоянные решеток (*a*), анионные параметры (*u*), сдвиги Fe *K*-краев (ΔE), зарядность ионов Fe ($q_{\rm Fe}/e$), а также параметры расчетной модели в чистом железе и в ферритах Me(Mn, Zn, Mg, Ni)Fe₂O₄

*Стрелкой \uparrow обозначен спин "вверх"; ↓ — спин "вниз".

2) Процедура полного многократного рассеяния (FMS) проводилась на кластере до 30 атомов (*N_{FMS}*).

3) В пределах наибольшего пути рассеяния (RPATH), длина которого ограничилась максимальными размерами кластера, учитывались только значимые пути рассеяния с кратностью 8.

4) В данных расчетах использовался обменный потенциал Хедина–Лунквиста, причем процедура самосогласования кристаллического потенциала (SCF) также проводилась на кластере до 30 атомов, а число итераций (петель) достигало 10.

Значения величин наибольших путей рассеяния, межатомных расстояний $L_{\rm Fe-O}$, $L_{\rm Me-O}$, а также размеры кластеров (N_{max} , $N_{\rm FMS}$), координационные числа (KЧ) и типы атомов ближайшего окружения указаны в таблице.

2. Результаты расчетов и их обсуждение

На рисунке представлены Fe K-края поглощения в чистом железе и в ферритах Me(Mn, Mg, Zn, Ni)Fe₂O₄, рассчитанные с помощью FEFF8. Шкала энергий на рисунке, a, является относительной, где за нуль (E_0) принято положение края поглощения в чистом железе. Выбор такой шкалы обусловлен необходимостью сравнения теоретических Fe K-спектров с экспериментальными, изображенными на рисунке, b, где сдвиги K-краев поглощения железа при переходе к ферритам даются относительно чистого железа. Положения экспериментальных Fe K-краев взяты из работы [5]. Энергетическое положение теоретических K-краев поглощения

Fe *K*-края поглощения железа в моноферритах со структурой шпинели: *a* — теоретические, рассчитанные с помощью FEFF8, *b* — экспериментальные [5]. Стрелками указаны положения краев поглощения.

 (E_0) определялось как точка перегиба арктангенсоиды, которой аппроксимировались теоретические Fe *K*-края во всех исследуемых моноферритах. Для сравнения теоретических *K*-краев поглощения с экспериментом необходимо учесть, что в шпинелях существуют два различных типа ионов железа с разной зарядностью и различной ориентацией спина. Экспериментальные Fe *K*-края [5], изображенные на рисунке, *b*, представляют собой усредненные спектры поглощения ионов железа. По этой причине теоретические Fe *K*-края, приведенные на рисунке, *a*, также являются суперпозицией Fe *K*-краев различных типов ионов железа.

Анализируя Fe *K*-спектры при переходе от чистого железа к моноферритам, необходимо отметить смещение края поглощения в высокоэнергетическую область на величину, не превышающую ~ 9 eV. Такая тенденция существует во всех указанных соединениях и не зависит от способа распределения катионов в элементарной ячейке, что хорошо коррелирует с экспериментом [5]. Однако, анализируя численные значения величин сдвигов *K*-краев поглощения железа в эксперименте и в проведенных расчетах (см. таблицу), мы видим, что хорошее согласие с экспериментом достигается только в нормальных шпинелях MnFe₂O₄ и ZnFe₂O₄. Наибольшее отличие численного значения сдвига Fe *K*-края по отношению к чистому металлу (~ 3 eV) наблюдается на теоретических кривых MgFe₂O₄ и NiFe₂O₄, которые являются обращенными

Физика твердого тела, 2001, том 43, вып. 1

шпинелями и где обнаружены интенсивные "наплывы" в предкраевой области (ПКО) спектра, не выявленные экспериментом (a'').

ПКО можно интерпретировать как переходы 1s-электронов в незанятые 3*d*-состояния, подобно тому как главный максимум связывается с переходом 1s-электронов в 4*р*-состояния [5]. Данный вывод подтверждается настоящим расчетом, в котором с использованием LDOS-карты программы FEFF8 рассчитаны локальные плотности 3d-электронных состояний железа, основной максимум которых расположен в той же энергетической области, что и наплывы а' во всех указанных ферритах $Me(Mg, Mn, Ni, Zn)Fe_2O_4$. Поскольку основные особенности XANES, в том числе и ПКО, связаны с рассеянием фотоэлектронной волны в сложном потенциальном рельефе атомов ближайшего окружения, то появление наплывов а" в ПКО Fe K-спектров в MgFe₂O₄ и NiFe₂O₄ можно связать с существованием в обращенных шпинелях атомов железа двух типов, расположенных в тетраэдрических (Fe_t) и октаэдрических (Fe_o) пустотах в отличие от нормальных шпинелей MnFe₂O₄ и ZnFe₂O₄, где ионы железа расположены только в октаузлах. Поскольку, как было сказано ранее, теоретические Fe K-спектры, являются суперпозицией К-спектров ионов железа не только с различной ориентацией спина, но и расположенных в неэквивалентных кристаллических позициях, то появление наплывов а" может быть связано с различными межатомными расстояниями Fe_tO и Fe_oO и изменением рельефа ближайшего окружения поглощающего атома (см. таблицу). Отсутствие аналогичного усложнения в ПКО Fe K-спектра в $Mn_{0.8}Fe_{0.2}[Fe_{1.8}Mn_{0.2}]O_4$ может быть обусловлено тем, что количество атомов Fe_t мало по сравнению с Fe_o (в нормальных шпинелях Fe_t = 0, Fe_o=2; в обращенных Fe_t = 1, Fe_o = 1 на формульную единицу AB₂C₄). Таким образом, появление дополнительных особенностей a'' должно быть связано не столько с типом атомов, входящих в ферриты помимо железа, сколько с их расположением в кристаллической решетке.

Дополнительное vсложнение ПКО Fe K-края приводит к неоднозначности в определении "положения края", так как аппроксимирующая арктангенсоида преобразуется в изобилующую экстремумами кривую, чем может быть частично объяснено расхождение теоретических и экспериментальных результатов. Однако величина расхождения теоретических и экспериментальных сдвигов в обращенных шпинелях не может быть объяснена только проблемами определения положения края (его середины). Как отмечено в монографии [5], при возрастании валентности железа Fe K-край должен все больше смещаться в высокоэнергетическую область. Увеличение зарядов ионов железа ($q_{\rm Fe}/e$, где e — заряд электрона) при переходе от нормальных к обращенным шпинелям, которые рассчитаны с помощью FEFF8, хорошо коррелирует со все большим смещением Fe K-края (см. таблицу). Является ли полученный результат всеобщей зкономерностью в тенленшиях смешения краев поглошения в нормальных и обращенных шпинелях, должны показать дальнейшие расчеты других обращенных шпинелей. В настоящее время можно утверждать, что удовлетворительное согласие с экспериментом по форме Fe K-краев и энергетическим расстояниям (*a*-*b*) между главным краем поглощения а и наблюдаемыми четко выраженными особенностями *b* тонкой структуры спектров (см. таблицу), а также отражение общей тенденции смещения Fe K-края в высокоэнергетическую область как в нормальных, так и в обращенных шпинелях, показывают достаточную эффективность FEFF8-кода при расчете спектров поглощения.

Авторы статьи выражают благодарность А. Анкудинову (Национальная лаборатория в Лос-Аламосе, США) за предоставленную программу FEFF8 и оказанные консультации по ее использованию.

Список литературы

- A.L. Ankudinov, B. Ravel, J.J. Rehr, S.D. Conradson. Phys. Rev. B58, 2, 7565 (1998).
- [2] J.J. Rehr, R.C. Albers. Phys. Rev. B41, 12, 8139 (1990).
- [3] Е.В. Гортер. УФН 57, 2, 279 (1955).
- [4] В.М. Таланов. Энергетическая кристаллохимия многоподрешеточных кристаллов. Изд-во Ростовского ун-та, Ростов (1986). 157 с.
- [5] Е.А. Жураковский, П.П. Киричок. Электронные состояния в ферримагнетиках. Наук. думка, Киев (1985). 280 с.