Новая соразмерная фаза на теоретической фазовой диаграмме для кристалла [N(CH₃)₄]₂CuCl₄

© Д.Г. Санников, Г.А. Кессених

Институт кристаллографии им. А.В. Шубникова Российской академии наук, 119333 Москва, Россия

E-mail: sannikov@ns.crys.ras.ru

(Поступила в Редакцию 26 июля 2004 г.)

Построена теоретическая фазовая диаграмма на плоскости двух коэффициентов термодинамического потенциала с новой соразмерной фазой, характеризуемой безразмерным волновым числом q = 2/5. На основе этой диаграммы получена фазовая диаграмма температура *T*-давление *P*. Проведено сравнение с экспериментальной T-P-фазовой диаграммой.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 03-02-16104).

1. Термодинамические потенциалы

Фазовая диаграмма температура Т-давление Р для кристалла $[N(CN_3)_4]_2CuCl_4$ (TMA — CuCl), измеренная методом рассеяния рентгеновских лучей при $T = 22 - 160^{\circ}$ С, P = 0.25 - 0.95 GPa, приведена в [1]. От ранее полученных фазовых диаграмм [2-4] она отличается присутствием соразмерной фазы С2/5 с безразмерным волновым числом $q_{2/5} = 2/5$. Цель данной работы получить теоретическую Т-Р-фазовую диаграмму с фазой $C_{2/5}$, основываясь на феноменологическом подходе, разработанном в [5,6] (см. также [7,8]). Не повторяя изложения теоретического подхода, начнем с записи термодинамических потенциалов для исходной С (симметрия Pmcn), несоразмерной IC и соразменой $C_{m/l}$ фаз, где *m*/*l* определяет значение соответствующего волнового числа $q = q_{m/l} = m/l$ ($C_{0/1}$ — фаза с волновым числом q = 0),

$$\Phi_{IC} = \alpha(b)\rho^{2} + \beta\rho^{4} + \gamma\rho^{6},$$

$$\Phi_{m/l} = \alpha(q_{m/l})\rho^{2} + \beta\rho^{4} + \gamma\rho^{6} - \alpha'_{l}\rho^{2l}\cos 2l\varphi,$$

$$\Phi_{0/l} = \alpha\xi^{2} + (2/3)\beta\xi^{4} + (2/5)\gamma\xi^{6}.$$
(1)

Потенциал исходной фазы $\Phi_C = 0$. Несмотря на то, что в (1) коэффициент $\beta > 0$, необходимо учитывать инвариант с коэффициентом γ ($\gamma > |\alpha'_3|$), поскольку вдали от перехода C-IC выражение для $\Phi_{1/3}$ становится при $\gamma = 0$ неприменимым. Инвариант с коэффициентом γ необходимо учитывать, очевидно, во всех потенциалах.

Зависимость коэффициента упругости $\alpha(q)$ мягкой оптической ветви от безразмерного волнового числа $(k_z = qc^*)$ определяется выражением

$$\alpha(q) = \alpha - \delta q^2 - \kappa q^4 + \tau q^6, \quad \kappa > 0, \quad \tau > 0, \quad (2)$$

которое можно переписать в виде

$$\alpha(q) = a + \Delta(q), \quad \Delta(q) = \tau (b^2 - q^2)^2 [q^2 + 2(b^2 - q_L^2)],$$

$$\alpha(b) = a, \ \alpha(q_{m/l}) = a + \Delta_{m/l}, \ \Delta_{m/l} = \Delta(q_{m/l}), \ \alpha = a + \Delta_0,$$

$$\Delta_0 = \Delta(0), \quad \delta = \tau b^2 (3b^2 - 4q_L^2), \quad q_L^2 = \kappa/2\tau, \qquad (3)$$

где *а* и *b* — координаты минимума мягкой ветви (2) в произвольной точке зоны Бриллюэна.

Варьируя потенциал $\Phi_{m/l}$ в (1) по φ , получим два решения: sin $l\varphi = 0$, устойчивое при $\alpha'_l > 0$, и cos $l\varphi = 0$, устойчивое при $\alpha'_l < 0$. Потенциал $\Phi_{m/l}$ приобретает для обоих решений вид

$$\Phi_{m/l} = \alpha(q_{m/l})\rho^2 + \beta \rho^4 + \gamma \rho^6 - |\alpha_l'|\rho^{2l}.$$
 (4)

Удобно перейти к безразмерным переменным ϕ , Rи параметрам A, D_0 , D_l , B, Q_l , Q_L , D, A_γ , A_3 , A_l (Q — число)

$$\Phi = \phi \Phi_0, \quad \rho = RR_0, \quad \xi = RR_0, \quad \Phi_0 = (\tau Q^6)^2 / \beta,$$

$$R_0^2 = \tau Q^6 / \beta, \quad a = -A\tau Q^6, \quad \Delta_0 = D_0 \tau Q^6,$$

$$\Delta_{m/l} = D_l \tau Q^6, \quad b = BQ, \quad q_{m/l} = Q_l Q,$$

$$q_L = Q_L Q, \quad \delta = D\tau Q^4, \quad \gamma = (2\beta A_\gamma)^2 / \tau Q^6,$$

$$\alpha'_3 | = (2\beta A_3)^2 / \tau Q^6, \quad |\alpha'_l| = (2\beta A_l)^{l-1} / (\tau Q^6)^{l-2}.$$
(5)

Термодинамические потенциалы (1) для Φ_{IC} , $\Phi_{0/1}$ и (4) для $\Phi_{m/l}$ приобретают теперь вид

$$\phi_{IC} = -AR^{2} + R^{4} + 4A_{\gamma}^{2}R^{6},$$

$$\phi_{m/l} = -(A - D_{l})R^{2} + R^{4} + 4A_{\gamma}^{2}R^{6} - (2A_{l})^{l-1}R^{2l},$$

$$\phi_{0/1} = -(A - D_{0})R^{2} + (2/3)R^{4} + (8/5)A_{\gamma}^{2}R^{6}.$$
 (6)

Варьируя потенциалы (6) по переменной R, получим

$$\begin{split} \phi_{IC} &= -(1/6^3 A_{\gamma}^4) \{ [1 + 12A_{\gamma}^2 A]^{3/2} - [1 + 18A_{\gamma}^2 A] \}, \\ \phi_{0/1} &= -(1/0.54 \cdot 6^3 A_{\gamma}^4) \{ [1 + 0.9 \cdot 12A_{\gamma}^2 (A - D_0)]^{3/2} \\ &- [1 + 0.9 \cdot 18A_{\gamma}^2 (A - D_0)] \}, \\ \phi_{1/3} &= -[1/6^3 (A_{\gamma}^2 - A_3^2)^2] \{ [1 + 12(A_{\gamma}^2 - A_3^2)(A - D_3)]^{3/2} \\ &- [1 + 18(A_{\gamma}^2 - A_3^2)(A - D_3)] \}, \\ \phi_{m/l} &= -(1/6^3 A_{\gamma}^4) \{ [1 + 12A_{\gamma}^2 (A - D_l)]^{3/2} \\ &- [1 + 18A_{\gamma}^2 (A - D_l)] \} - (1/2A_l) \{ (A_l/6A_{\gamma}^2) \\ &\times ([1 + 12A_{\gamma}^2 (A - D_l)]^{1/2} - 1) \}^l, \quad l > 3. \end{split}$$

В выражении для $\phi_{m/l}$ второе слагаемое предполагается малым по сравнению с первым (условие слабой анизотропии), по нему производится разложение.

2. Границы между фазами

Приравнивая потенциалы (7) друг к другу, получим выражения для границ между фазами. Приведем выражения соответственно для границ C-IC и $C-C_{0/1}$, которые имеют простой вид

$$A = 0, \quad A = D_0, \tag{8}$$

а также выражения для границ $IC - C_{m/l}$ и $C_{m/l} - C_{m'/l'}$ (l > 3), полученные из (7) при условии, что $D_l \ll A$ (и $D_{l'} \ll A$), которое хорошо выполняется,

$$D_{l} = \{ (A_{l}/6A_{\gamma}^{2})([1+12A_{\gamma}^{2}A]^{1/2}-1) \}^{l-1},$$

$$D_{l} - \{ (A_{l}/6A_{\gamma}^{2})([1+12A_{\gamma}^{2}A]^{1/2}-1) \}^{l-1}$$

$$= D_{l'} - \{ (A_{l'}/6A_{\gamma}^{2})([1+12A_{\gamma}^{2}A]^{1/2}-1) \}^{l'-1}.$$
 (9)

Выражения для других границ приводить не имеет смысла, поскольку это сведется к многократному переписыванию потенциалов (7), приравненных друг к другу (всюду сократится лишь общий множитель 6^3). Заметим, что три границы C-IC, $C-C_{0/1}$ (8) и $IC-C_{0/1}$ сходятся в одной точке (LT-точка [5]). Также сходятся в одной точке (как это и должно быть) три другие границы: $IC-C_{1/3}$, $IC-C_{0/1}$ и $C_{1/3}-C_{0/1}$.

3. Термодинамические потенциалы и фазовые границы при малых значениях *А*

При рассмотрении не слишком больших значений A (5), при которых выполняется условие $A_{\gamma}^2 A \ll 1$, выражения для потенциалов (7) можно упростить

$$\phi_{IC} = -(1/4)A^2[1 - 2A_{\gamma}^2 A],$$

$$\phi_{0/1} = -(3/8)(A - D_0)^2[1 - (9/5)A_{\gamma}^2(A - D_0)]$$

$$\phi_{1/3} = -(1/4)(A - D_3)^2 [1 - 2(A_{\gamma}^2 - A_3^2)(A - D_3)],$$

$$\phi_{m/l} = -(1/4)(A - D_l)^2 [1 - 2A_{\gamma}^2(A - D_l)]$$

$$-(1/2)A_l^{l-1}(A - D_l)^l [1 - 3lA_{\gamma}^2(A - D_l)], \quad (10)$$

где вторые слагаемые в квадратных скобках малы по сравнению с единицей.

Приравнивая потенциалы (10) друг к другу, получим выражения для границ между соответствующими фазами

$$IC-1/3: \qquad A_3^2 A^2 + 2(A_{\gamma}^2 - A_3^2)D_3 A \\ -D_3 - (A_{\gamma}^2 - A_3^2)D_3^2 = 0,$$

$$IC-0/1: \quad A = c_0 D_0 - (c_0 - 1)A_{\gamma}^2 A^2 \\ + (9/10)c_0 A_{\gamma}^2 (A - D_0)^2, \quad c_0 \equiv 3 + \sqrt{6},$$

$$1/3 - 0/1: \quad A = c_0 D_0 - (c_0 - 1)D_3 + (9/10)c_0 A_{\gamma}^2 (A - D_0)^2 \\ - (c_0 - 1)(A_{\gamma}^2 - A_3^2)(A - D_3)^2. \qquad (11)$$

Эти выражения можно пытаться и дальше упрощать, используя исходное условие $A_{\gamma}^2 A \ll 1$. Однако при этом необходимо следить за тем, чтобы три границы (11) по-прежнему сходились в одной точке. Здесь проводить эти упрощения не будем; тем более что все уравнения (11) квадратичны относительно A и, следовательно, легко разрешимы.

Границы $IC - C_{m/l}$ (9) можно представить в виде

$$A = (1/A_l) D_l^{1/(l-1)} \left[1 + 3A_{\gamma}^2 (1/A_l) D_l^{1/(l-1)} \right].$$
(12)

4. Фазовые диаграммы

Согласно (3), величины D_0 и D_l (5) выражаются через B^2 следующим образом:

$$D_0 = 2B^4 (B^2 - Q_L^2),$$

$$D_l = (B^2 - Q_L^2) [Q_1^2 + 2(B^2 - Q_L^2)].$$
(13)

Задавая значения B^2 , определяем D_0 и D_l из (13) и A из (7)–(9) или из (11) и (12), что позволяет строить фазовые границы на плоскости D_0 –A.

При значении $B^2 = (2/3)Q_L^2$ исчезает минимум мягкой ветви в произвольной точке зоны Бриллюэна. Одновременно теряют смысл величины *a* и *b* (*A* и *B*). Следовательно, диаграмма D_0 -*A* имеет смысл лишь при значении $D_0 \ge -(2Q_L^2/3)^3$ (см. (13)).

На рис. 1 представлена экспериментальная T-P-фазовая диаграмма, полученная при охлаждении [1]. Теоретическая D_0 -A-фазовая диаграмма, построенная по формулам (7) и (11), (12), приведена на рис. 2. Для ее построения использовались параметры

$$A_{\gamma} = A_3 = 0.6, \quad A_8 = 1.5, \quad A_5 = 0.8,$$

 $Q_L^2 = 0.2, \quad Q = 0.5.$ (14)

Физика твердого тела, 2005, том 47, вып. 4

707

Тонкими линиями на рис. 2 показаны границы, построенные по формулам (11), (12), обычными линиями по формулам (7)–(9). Некоторые границы (IC–0/1, IC–3/8 и IC–2/5) в масштабе рис. 2 не различаются. Другие границы (IC–1/3 и в особенности 1/3–0/1) существенно различаются, и это различие возрастает с ростом А. Заметим, что граница $C_{2/5}-C_{1/3}$ заметно отклоняется от границы IC– $C_{1/3}$ (в отличие от границ $C_{3/8}-C_{1/3}$ и IC– $C_{1/3}$). Чтобы подчеркнуть это отклонение, граница IC– $C_{1/3}$ проведена пунктиром.

При постоении T-P-фазовой диаграммы на основе D_0-A -диаграммы предполагаем линейную зависимость коэффициентов D_0 и A от T и P. Тогда оси T и P на рис. 2 будут прямыми линиями. Их позиция и ориентация показаны на рис. 2.

Рис. 1. Экспериментальная T-P-фазовая диаграмма, полученная при охлаждении [1]. Пунктиром показаны диаграммы, представленные в [2–4].

Рис. 2. Теоретическая фазовая диаграмма на плоскости $D_0 - A$. Также показаны оси T и P.

Рис. 3. Теоретическая T - P-фазовая диаграмма, полученная на основании $D_0 - A$ -диаграммы (рис. 2).

На рис. 3 представлена теоретическая T-P-фазовая диаграмма. Между диаграммами на рис. 1 и 3 имеется согласие в области, близкой к фазовому переходу C-IC. Однако в области, близкой к фазовому переходу $IC-C_{1/3}$, на рис. 1 (как и на диаграммах в [2-4]) наблюдается сильная нелинейность. На рис. 3 такой нелинейности нет. Возможно, это связано с тем, что для IC-фазы использовалось одногармоническое приближение. Приближения и предположения, сделанные при построении теоретических диаграмм, приведены в [5].

Список литературы

- [1] T. Asahi, K. Izutsu. J. Phys. Soc. Jpn. 72, 2, 330 (2003).
- [2] S. Shimomura, H. Terauchi, N. Hamaya, Y. Fujii. Phys. Rev. B 54, 10, 6915 (1996).
- [3] K. Gesi. J. Phys. Soc. Jpn. 65, 6, 1963 (1996).
- [4] К. Gesi. Кристаллография 44, 89 (1999).
- [5] Д.Г. Санников. ФТТ 42, 12, 2213 (2000).
- [6] H. Mashiyama, G.A. Kessenikh, D.G. Sannikov. Ferroelectrics 283, 109 (2003).
- [7] D.G. Sannikov, G.A. Kessenikh, H. Mashiyama. J. Phys. Soc. Jpn. 69, 1, 130 (2000); 71, 6, 1435 (2002).
- [8] D.G. Sannikov, H. Mashiyama. J. Phys. Soc. Jpn. 71, 7, 1698 (2002); 72, 6, 1423 (2003).