Теплоемкость и фазовые переходы в кристаллах NH_4LiSO_4 , $Cs_x(NH_4)_{1-x}LiSO_4$ и RbLiSO₄

© И.Н. Флёров, А.В. Карташев, В.А. Гранкина

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

E-mail: flerov@ksc.krasn.ru

(Поступила в Редакцию 25 июня 2004 г.)

Выполнены измерения и проанализировано поведение теплоемкости кристаллов NH₄LiSO₄, RbLiSO₄ и $Cs_x(NH_4)_{1-x}LiSO_4$ в широком интервале температур, включающем области фазовых переходов. Изменения энтропии, сопутствующие структурным превращениям в изученных кристаллах, не характерны для процессов "чистого" упорядочения структурных элементов. Результаты обсуждаются в рамках феноменологической теории и модельных представлений.

Работа выполнена при фининсовой поддержке Минпромнауки (грант НШ-939.2003.2) и в рамках программы Президиума РАН (проект 9.1).

Многочисленные соединения с общей химической формулой АА'СХ4 (А, А' и С — катионы, Х — анион) образуют обширное семейство кристаллов, обладающих в некотором интервале температур структурой типа β -K₂SO₄ (пр. гр. $G_1 = D_{2h}^{16} - Pmcn, z = 4$). Прафазой такой структуры является гексагональная структура α -K₂SO₄ (пр. гр. $G_0 = D_{6h}^4 - P6_3/mmc$, z = 2), которая в соответствии с [1] может существовать лишь при наличии ориентационного разупорядочения тетраэдрических ионных групп СХ₄. Экспериментально гексагональная фаза была обнаружена, однако, далеко не во всех кристаллах, имеющих структуру β -K₂SO₄. Надежно фазовый переход $\alpha \rightarrow \beta$ установлен в некоторых кислородных соединениях, в которых катионы А и А' идентичны, например в K_2SO_4 , K_2SeO_4 , K_2CrO_4 и др. [1]. В то же время во многих кристаллах с $A \neq A'$ либо фазовый переход в гексагональную фазу именно с пр. гр. *P6*₃/*mmc* не наблюдался вплоть до температуры плавления, либо пространственная группа гексагональной фазы не была установлена однозначно. Однако с точки зрения модельных представлений прафаза G₀ вполне может существовать и в кристаллах такого рода [2].

При понижении температуры стабильная кристаллическая модификация β -K₂SO₄ часто трансформируется в сегнетоэлектрические, сегнетоэластические и несоразмерные фазы вследствие единичных или последовательных обратимых фазовых переходов. На многообразие искаженных фаз оказывает немалое влияние химическое давление, которое может быть изменено путем изовалентных замещений катионов и анионов в структуре β -K₂SO₄. Это хорошо иллюстрируется на примере ряда кристаллов A LiSO₄, симметрия которых в некотором интервале температур является орторомбической с пр. гр. Ртсп [1]. В этих соединениях тетраэдрические группы SO₄ образуют каркасную структуру за счет связи между собой через тетраэдры LiO₄. В зависимости от размера катиона А фазовые переходы в сегнетоэластическую фазу с пр. гр. $G_2 (C_{2h}^5) - P112_1/n$ и z = 4 происходят при понижении температуры либо непосредственно (CsLiSO₄–CLS), либо через ряд промежуточных структурных форм, включая несоразмерную фазу *I*: $Pmcn \rightarrow I \rightarrow P2_1/c11 \rightarrow P11n \rightarrow P112_1/n$ (RbLiSO₄–RLS). В соединении NH₄LiSO₄(NLS) сегнетоэластическая моноклинная фаза $P112_1/n$ не наблюдается вплоть до гелиевых температур, а фазовый переход из Pmcn сопровождается возникновением сегнетоэлектрического состояния (пр. гр. $P2_1cn$, z = 4), существующего в области ~ 160 К. Затем происходит переход в сегнетоэластическую фазу $P2_1/c11$ (z = 8). Выполненные недавно исследования системы $Cs_x(NH_4)_{1-x}LiSO_4$ (CNLS) позволили установить, что фазовый переход $P112_1/n \rightarrow P2_1cn$ существует лишь в узкой области концентраций x = 0.3-0.5 [3].

Сравнительно недавно [4–6] появились сведения о том, что кристалл TlLiSO₄ (TLS) также обладает при комнатной температуре орторомбической (*Pmcn*) симметрией и при охлаждении переходит в результате ряда структурных превращений в моноклинную фазу с неопределенной пространственной группой. При нагревании выше 531 К в TLS реализуется гексагональная фаза, однако ее пространственная группа — $P6_3$ (z = 24) — не соответствует структуре α -K₂SO₄.

Что касается соединения KLiSO₄ (KLS), то, хотя в нем и обнаружены гексагональная и орторомбическая фазы, вопрос об их пространственных группах до сих пор не решен однозначно [1].

На основе некоторых экспериментальных результатов, в частности структурных исследований, сформировалось представление о том, что в основе фазовых переходов $G_0(P6_3/mmc) \rightarrow G_1(Pmcn) \rightarrow G_2$ в соединениях $AA'CX_4$ и A_2CX_4 лежат процессы упорядочения тетраэдрических ионных групп CX_4 [1,2,7]. Отсутствие значительного вклада процессов упорядочения тетраэдров NH₄ в механизм фазовых переходов в аммонийсодержащих кристаллах убедительно подтверждается исследованиями ND₄LiSO₄ [8]. Однако данные об исследовании структуры кристаллов A LiSO₄ далеко не всегда достаточно убедительны, чтобы делать однозначный вывод о механизме переходов. На первый взгляд кажется, что аргументов в пользу упорядочения тетраэдров больше, и авторы [9–11] отдают предпочтение модели порядок– беспорядок. В то же время сравнительный анализ структуры ряда кристаллов [12] показал, что степень разупорядочения ионов зависит от соотношения размеров катионов.

Известно, что энтропия фазового перехода ΔS , являясь одним из фундаментальных термодинамических свойств, позволяет характеризовать механизм структурных искажений, а ее величина в немалой степени зависит от ангармонизма колебаний критических ионов [13]. В предельных случаях, т.е. при малой (фазовые превращения типа смещения) и большой ангармоничности потенциала (переход порядок-беспорядок), величины ΔS различаются значительно, составляя соответственно ~ 0.1*R* и \geq 0.7*R* (*R* ln 2).

Несмотря на то что многие физические свойства кристаллов A LiSO₄ были исследованы довольно подробно [1], теплофизические аспекты фазовых переходов, в частности, калориметрическими методами изучены недостаточно. Надежные сведения об изменении энтропии, связанном с переходом второго рода из орторомбической фазы *Ртсп*, были получены только для CLS [14]. Оказалось, что величина $\Delta S \approx 0.2R$ значительно ближе к значению, характерному для переходов типа смещения. Однако при расчетах в рамках модели поэтапного упорядочения тетраэдров в результате искажения структур $P6_3/mmc \rightarrow Pmcn \rightarrow P112_1/n$ [2] было показано, что к существенному уменьшению энтропии перехода могут приводить корреляции колебаний критических ионов. В этом случае в CLS ΔS составляет $\sim 0.3R$ при каждом из двух фазовых переходов.

С целью расширения представлений о возможных энтропиях и механизмах фазовых переходов в кристаллах *A* LiSO₄ в настоящей работе выполнены измерения теплоемкости кристаллов NLS, RLS и CNLS в широком интервале температур, включающем области структурных превращений.

1. Экспериментальные методы

Кристаллы CNLS (x = 0.95), NLS и RLS выращены из водных растворов путем медленного испарения при температуре 310 К. Идентификация и паспортизация образцов были выполнены в три этапа. Исследования методом рентгеновской дифракции при комнатной температуре позволили установить отсутствие примесей исходных компонентов и посторонних фаз. Оптическая однородность образцов была установлена с помощью поляризационного микроскопа. На последнем этапе паспортизации проводились калориметрические исследования с помощью дифференциального сканирующего калориметра ДСМ-2М в интервале температур 120–520 К. В качестве образцов использовались как кристаллы, так и приготовленные из них порошки. Установлено, что температуры фазовых переходов в исследуемых образцах удовлетворительно совпадают с полученными ранее другими методами [1]. Этот же калориметрический метод использовался и для более тщательных теплофизических измерений в области высокотемпературных фазовых переходов в NLS и RLS. Во всех экспериментах скорость изменения температуры в режимах нагрева и охлаждения составляла 8 К/min, а массы образцов варьировались в пределах 0.10-0.15 g. Более подробно экспериментальные детали, касающиеся определения энтальпии и энтропии фазовых переходов, описаны нами в [15].

Несмотря на то что исследования высокотемпературного фазового перехода в NLS методом ДСМ ранее уже проводились нами [15,16], в настоящей работе мы повторили эти эксперименты на большом количестве порошковых и монокристаллических образцов, полученных при различных условиях кристаллизации. Эти статистические данные позволили, во-первых, однозначно решить вопрос о количестве фазовых переходов в NLS и, во-вторых, получить более достоверную информацию о поведении теплоемкости.

При температурах ниже 373 К поведение теплоемкости кристаллов NLS и CNLS было исследовано с помощью адиабатического калориметра. Образцы представляли собой плоские пластины с массами 1.288 g (NLS) и 1.585 g (CNLS). Измерения проводились в фурнитуре, аналогичной использованной в [17] при измерении теплоемкости одноосных сегнетоэлектриков. Теплоемкость фурнитуры определялась в отдельном эксперименте. Измерения теплоемкости образцов выполнены в режимах дискретных ($\Delta T = 1.0-2.5$ K) и непрерывных (dT/dt = 0.16-0.50 K · min⁻¹) нагревов. В непосредственных окрестностях низкотемпературного перехода в NLS проводились исследования методом квазистатических термограмм со скоростью нагрева $3 \cdot 10^{-2}$ K · min⁻¹.

2. Результаты исследований

1) NLS. На рис. 1 представлены экспериментальные данные, полученные в ходе измерений теплоемкости $C_p(T)$ кристалла NLS в широком интервале температур на адиабатическом (110–373 K) и дифференциальном сканирующем (350–520 K) калориметрах в режимах непрерывных и дискретных нагревов. Метод ДСМ не обеспечивает достаточной точности определения абсолютных значений теплоемкости. Поэтому данные этого метода согласовывались с результатами, полученными с помощью адиабатического калориметра в интерале температур 355–373 K.

Обнаружены две аномалии теплоемкости, связанные с последовательностью фазовых переходов между параэлектрической *Pmcn*, сегнетоэлектрической *P2*₁*cn* и сегнетоэластической *P2*₁*/c*11 фазами.

Рис. 1. Теплоемкость NLS в широком интервале температур. Штриховая линия — решеточная теплоемкость. На верхней вставке — термограмма в режиме нагрева в окрестностях *T*₂. На нижней вставке — избыточная теплоемкость в окрестностях *T*₂.

Термодинамические параметры высокотемпературного фазового перехода, исследованного для большого числа образцов, оказались достаточно хорошо воспроизводимыми. Температура максимума теплоемкости T₁ = 460.5 К колеблется от образца к образцу в пределах 1.5 К. С целью определения величины и температурного интервала существования в фазах $P2_1cn$ и $P2_1/c11$ избыточной теплоемкости ΔC_p была определена регулярная составляющая — решеточная теплоемкость, показанная на рис. 1 штриховой линией. В качестве уравнения, аппроксимирующего экспериментальные данные вдали от точек фазовых переходов (114-203 и 308-373 К), использовалась комбинированная функция Дебая-Эйнштейна $C_{\text{latt}}(T) = A_1 D(\Theta_D/T) + A_2 E(\Theta_E/T)$. Среднее отклонение экспериментальных точек от сглаженной кривой составляет примерно ±0.5%. Описанная процедура позволила установить, что избыточная теплоемкость присутствует в широком интервале температур выше и ниже T_1 (рис. 1). Эти результаты согласуются с полученными ранее данными о поведении теплового расширения и двупреломления [3,18]. В этом случае естественным выглядит увеличение энтальпии перехода $Pmcn \rightarrow P2_1cn$ до $\Delta H_1 = 1300 \pm 150 \,\mathrm{J} \cdot \mathrm{mol}^{-1}$ в настоящих измерениях по сравнению с величиной $1170 \pm 200 \, \text{J} \cdot \text{mol}^{-1}$, определенной при измерениях теплоемкости NLS в более узком интервале температур [15]. Следует также отметить, что для всех исследованных образцов NLS не обнаружено расщепления аномалии теплоемкости при T₁ на два пика, наблюдавшегося в [19] и связываемого с последовательностью фазовых переходов в интервале 2-3 K.

Температура максимума пика теплоемкости $T_2 = 287.7$ К, принятая на первом этапе за температуру второго перехода, удовлетворительно согласуется со значениями, сообщавшимися, например, в [1]. В пределах разброса экспериментальных точек никаких других пиков теплоемкости между T_1 и T_2 и ниже T_2 не наблюдалось. Таким образом, выполненные нами чувствительным калориметрическим методом точные измерения однозначно позволяют снять вопрос и о существовании дополнительных аномалий теплоемкости NLS, связанных якобы с фазовыми переходами в области температур 330–350 К [20], около 250 К [21] и при 225 К [22].

Результаты исследования NLS методом квазистатических термограмм в окрестностях фазового превращения при T_2 приведены на верхней вставке к рис. 1. Вид термограммы соответствует поглощению теплоты при переходе. Уточнена температура фазового перехода $T_2 = 287.6 \pm 0.1$ К и определена величина скачка энтальпии (скрытой теплоты) $\delta H_2 = 310 \pm 15 \text{ J} \cdot \text{mol}^{-1}$.

В результате выделения решеточной составляющей установлено, что избыточная теплоемкость NLS ниже T_2 , не связанная с поглощением скрытой теплоты, хотя и невелика ($\Delta C_p \approx 0.025C_{\text{latt}}$ вблизи T_2), но существует в достаточно широком интервале температур T_2-40 К (см. нижнюю вставку на рис. 1). В результате учета вклада от $\Delta C_p(T)$ полное изменение энтальпии, связанное с фазовым переходом $P2_1/c11 \rightarrow P2_1cn$, определенное как $\Delta H_2 = \int \Delta C_p dT + \delta H_2$, составило 385 ± 35 J · mol⁻¹.

Рис. 2. Зависимость избыточной теплоемкости NLS вблизи *T*₂ от термоциклирования. Цифры *1–4* соответствуют последовательным опытам.

В процессе неоднократных измерений $C_p(T)$ в окрестностях низкотемпературного фазового перехода методом непрерывных нагревов с различными скоростями $(dT/dt = 0.28-0.47 \text{ K} \cdot \text{min}^{-1})$ обнаружено влияние термоциклирования на величину и положение максимума пика избыточной темплоемкости при T_2 (рис. 2). Наибольшее значение $(\Delta C_p)_{\text{max}}$ наблюдалось в первом эксперименте, что характерно для ярко выраженных фазовых переходов первого рода. В дальнейшем колебание величины $(\Delta C_p)_{\text{max}}$ от опыта к опыту может быть вызвано, в частности, ухудшением теплового контакта между отдельными частями кристалла, образовавшимися в результате растрескивания образца из-за значительного скачка объема. Однако изменения величины энтальпии перехода от опыта к опыту оказались намного меньше погрешности ее определения. Температура максимума $(\Delta C_p)_{\text{max}}$ при этом изменялась в пределах 0.6 К. Учитывая некоторую невоспроизводимость экспериментальных данных при изменении скорости нагревания образца, за температуру перехода следует принять величину, полученную в наиболее равновесных условиях, а именно в режиме квазистатических термограмм.

2) CNLS. Поведение теплоемкости кристалла CNLS зависимости от температуры, исследованное с В помощью адиабатического калориметра, представлено на рис. 3, а. Здесь же для сравнения приведены данные для CLS, полученные ранее при участии одного из авторов в [14]. Как и следовало ожидать, частичное замещение цезия аммонием влияет на термодинамические параметры вдали и вблизи фазового перехода. Температура максимума теплоемкости, выбранная за температуру фазового перехода $Pmcn \rightarrow P112_1/n$, выросла в твердом растворе на 5 К и составила $T_0 = 207.2 \pm 0.7$ К. Регулярная теплоемкость, определенная с использованием той же аппроксимирующей функции, что и ранее для NLS, показана штриховыми линиями на рис. 3, а. Для твердого раствора она оказалась больше во всем исследованном

Рис. 3. Температурная зависимость теплоемкости (*a*) и избыточной теплоемкости (*b*) CNLS (*1*) и CLS [14] (*2*). Штриховая линия — решеточная теплоемкость.

И.Н. Флёров, А.В. Карташев, В.А. Гранкина

интервале температур. Что касается избыточной теплоемкости, то ее поведение для CNLS заметно изменилось (рис. 3, *b*). Узкий пик $\Delta C_p(T)$, наблюдавшийся в CLS, сглаживается и его величина при T_0 существенно уменьшается. Здесь же следует заметить, что регулярная теплоемкость CLS была представлена в [14] в виде полиномиальной зависимости. Фазовый переход $Pmcn \rightarrow P112_1/n$ в CLS и CNLS является превращением второго рода, поэтому изменение энтальпии определялось интегрированием функции $\Delta C_p(T)$. Заметного влияния способа представления $C_{\text{latt}}(T)$ на величину энтальпии ($\Delta H_{\rm CLS} = 335 \pm 25 \, {\rm J} \cdot {\rm mol}^{-1}$) фазового перехода $Pmcn \rightarrow P112_1/n$ в CLS не обнаружено: различие величин лежит в пределах точности определения ΔH . В случае CNLS энтальпия перехода увеличилась по сравнению с CLS и составила $\Delta H_{\text{CNLS}} = 460 \pm 50 \,\text{J} \cdot \text{mol}^{-1}$.

3) RLS. Поскольку фазовые переходы в RLS реализуются при температурах выше 370 К, теплоемкость этого кристалла исследована только методом ДСМ. На рис. 4 приведена температурная зависимость аномальной теплоемкости. Надежно регистрируются три пика теплоемкости с температурами максимумов при $T_1 = 475 \, \mathrm{K},$ $T_3 = 460 \,\mathrm{K}, T_4 = 439 \,\mathrm{K}.$ Что касается аномалии при T_2 , то она сливается с пиком теплоемкости при T_1 . Однако это не является принципиальным, так как главным образом нас будут интересовать изменения термодинамических параметров, связанные с изменением симметрии $Pmcn \rightarrow P112_1/n$. Это искажение структуры реализуется в результате четырех последовательных фазовых переходов в RLS и вследствие прямого превращения в CLS. Поэтому, анализируя зависимость $\Delta C_p(T)$ для RLS, мы не стремились решать проблемы, связанные с разделением вкладов от каждого из последовательных переходов $Pmcn \rightarrow I \rightarrow P2_1c11 \rightarrow P11n$ в величину изменения энтальпии $\Delta H_{1-3} = \Sigma(\Delta H_1 + \Delta H_2 + \Delta H_3) =$ $= 1030 \pm 150 \,\text{J} \cdot \text{mol}^{-1}$. Что касается превращения $P11n \rightarrow P112_1/n$, соответствующее изменение энталь-

Рис. 4. Температурная зависимость избыточной теплоемкости RLS.

пии оказалось небольшим: $\Delta H_4 \approx 70 \text{ J} \cdot \text{mol}^{-1}$. Таким образом, полное изменение энтальпии, связанное с искажением структуры *Pmcn* до *P*112₁/*n*, составляет в RLS 1100 J · mol⁻¹.

3. Обсуждение результатов

Полученные в настоящей работе экспериментальные результаты позволяют определить и проанализировать термодинамические характеристики, связанные с фазовыми переходами в кристаллах A LiSO₄, в частности величины и поведение аномальных теплоемкости ΔC_p и энтропии ΔS , а также установить применимость некоторых термодинамических соотношений, связывающих теплофизические и другие физические свойства. Полные изменения энтропии определялись в случае фазовых переходов первого рода суммой двух вкладов $\Delta S = \delta S + \int (\Delta C_p/T) dT$. Первое слагаемое обусловлено скачкообразным изменением параметра перехода в точке превращения и рассчитывалось из скрытой теплоты $\delta S = \delta H/T_i$. Естественно, что для превращений второго рода величина ΔS определялась только вторым слагаемым.

Термодинамическое описание последовательности фазовых переходов в кристалле NLS выполнено в [23]. Свободная энергия F была представлена как функция параметров переходов ξ , η , отвечающих либрациям тетраэдрических групп и макроскопической поляризации P_s ,

$$\Delta F = \alpha \xi^{2} + \beta \xi^{4} + \gamma \xi^{6} + \varepsilon \xi P_{s} + a P_{s}^{2}$$
$$+ A(\eta_{1}^{2} + \eta_{2}^{2}) + B_{1}(\eta_{1}^{2} + \eta_{2}^{2})^{2} + B_{2}\eta_{1}^{2}\eta_{2}^{2}$$
$$+ C(\eta_{1}^{2} + \eta_{2}^{2})^{3} + \mu \xi^{2}(\eta_{1}^{2} + \eta_{2}^{2}) + \dots \qquad (1)$$

В соответствии с тем, что оба перехода в NLS являются превращениями первого рода, предполагались следующие соотношения [23]: $\alpha = \alpha_T(T - T_1)$, $A = A_T(T - T_2)$, $T_1 > T_2$, $\beta < 0$, $B_1 < 0$. Из условия минимума $\partial \Delta F / \partial P = 0$ следовало, что $\xi = -(a/\varepsilon)P_s$. Тогда свободную энергию можно представить в виде функции двух переменных $\Delta F(P, \eta)$

$$\Delta F = \alpha (a/\varepsilon)^2 P_s^2 + \beta (a/\varepsilon)^4 P_s^4 + \gamma (a/\varepsilon)^6 P_s^6$$

+ $A(\eta_1^2 + \eta_2^2) + B_1(\eta_1^2 + \eta_2^2)^2 + B_2 \eta_1^2 \eta_2^2$
+ $C(\eta_1^2 + \eta_2^2)^3 + \mu (a/\varepsilon)^2 P_y^2(\eta_1^2 + \eta_2^2) + \dots$ (2)

Поскольку от температуры зависят лишь коэффициенты α и A, полное изменение энтропии, связанное с последовательностью фазовых переходов $Pmcn \rightarrow P2_1cn \rightarrow P2_1/c12$, определяется как

$$\partial \Delta F / \partial T = -\Delta S = \alpha_T (a/\varepsilon)^2 P_s^2 + A_T (\eta_1^2 + \eta_2^2).$$
(3)

В соответствии с [23] условия стабильности рассматриваемых в NLS фаз выглядят следующим образом:

$$Pmcn: P_{s} = \xi = \eta_{i} = 0; \quad \alpha > 0, \quad a > 0, \quad A > 0,$$

$$P2_{1}cn: P_{s} \neq 0; \quad \xi \neq 0; \quad \eta_{1} = \eta_{2} = 0,$$

$$P2_{1}/c11: P_{s} = 0; \quad \xi = 0; \quad \eta_{1}^{2} = \eta_{2}^{2} = \eta^{2}.$$
(4)

Сдедовательно, при фазовом переходе $Pmcn \rightarrow P2_1cn$ изменение энтропии будет отвечать первому слагаемому в правой части (3). Соответствующее соотношение, связывающее скачки энтропии δS_1 и поляризации δP в точке превращения T_1 , имеет вид

$$\delta S_1 = \alpha_T (a/\varepsilon)^2 \delta P_s^2. \tag{5}$$

Специфика метода ДСМ, использованного нами для высокотемпературных исследований, в частности, NLS, заключается в том, что он не позволяет разделить вклады в энтальпию (и энтропию), связанные со скачком параметра порядка в точке фазовых переходов первого рода и его постепенным изменением до величины насыщения. Другими словами, на основе ДСМ-данных не всегда можно сделать уверенное заключение о роде перехода. В соответствии с результатами исследований, выполненных в [16,24], явных скачков двупреломления Δn и поляризации P_s при T_1 не обнаружено. С другой стороны, в работе [18], выполненной при участии одного из авторов, было показано, что характер поведения деформации и вид квазистатической термограммы явно свидетельствуют о наличии скачков объема и энтальпии в точке перехода $Pmcn \rightarrow P2_1cn$. Здесь уместно привести справедливый, на наш взгляд, вывод, предложенный для определения рода перехода в спорных ситуациях [25]: "... наличие скрытой теплоты (скачка параметра перехода), установленное хотя бы на одном из множества образцов, характеризует переход в данном веществе как переход первого рода". Таким образом, в силу экспериментально установленных фактов [18] переход при T₁ в NLS однозначно можно отнести к превращениям первого рода. В то же время известно, что в широком интервале температур между T_1 и T_2 наблюдается изменение поляризации [24], двупреломления [16] и коэффициентов теплового расширения [18] NLS. Эти факты свидетельствуют о постепенном нарастании параметра перехода с понижением температуры. А поскольку изменение энтропии в соответствии с (3) пропорционально квадрату параметра перехода, избыточная теплоемкость также дожна присутствовать в широком интервале температур ниже Т₁. Экспериментальные результаты соответствуют данному утверждению: фазовый переход $Pmcn \rightarrow P2_1cn$ оказался довольно близким к трикритической точке. Это следует из соотношения скачка энтальпии и ее полного изменения $\delta H_1/\Delta H_1 = 0.2$, которое оказалось существенно меньше единицы. Здесь уместно вспомнить данные исследований аномальной части двупреломления NLS ниже T_1 [16], на основании которых был сделан аналогичный вывод о положении перехода относительно трикритической точки.

В связи с отмеченным выше, безусловно, можно считать малодостоверными калориметрические данные, приведенные в [19], где избыточная теплоемкость NLS была обнаружена лишь в узкой области температур $\Delta T \approx 5$ К вблизи T_1 . Скорее всего, в этом случае удалось зарегистрировать часть аномальной теплоемкости, связанной только с поглощением скрытой теплоты. Действительно, авторы [19] путем интегрирования функции $\Delta C_p(T)$ получили величину $\Delta H_1 = 2.9 \text{ J} \cdot \text{g}^{-1}$, близкую к величине скачка энтальпии $\delta H_1 = 2.2 \pm 0.9 \text{ J} \cdot \text{g}^{-1}$, определенной нами в [18].

Используя величину δH_1 и константу Кюри-Вейсса $C = 5.6 \,\mathrm{K}$ [24], можно на основании (5) оценить величину скачка поляризации при T₁, считая справедливым соотношение $\alpha_1(a/\varepsilon)^2 = (2\pi/C)T_1$ [26]. Рассчитанная величина $\delta P_s \approx 0.1 \,\mu\text{C} \cdot \text{cm}^{-2}$ удовлетворительно согласуется с величиной $0.05-0.10\,\mu{\rm C}\cdot{\rm cm}^{-2}$, соответствующей наиболее быстрому изменению поляризации вблизи Т₁ [24]. Надежность экспериментально определенных величин подтверждается также результатами сопоставления в рамках соотношения Клапейрона-Клаузиуса $dT_{1}/dp = (\delta V_{1}/(V \delta H_{1}))T_{1}$ величин изменений энтальпии δH_1 и относительного объема $\delta V_1/V = 4 \cdot 10^{-4}$ [18], а также параметра, характеризующего восприимчивость кристалла к давлению $dT_1/dp = 0.6 \,\mathrm{K} \cdot \mathrm{GPa}^{-1}$ [1]. Рассчитанный скачок энтальпии $\delta H_1 = 1.5 \,\mathrm{J} \cdot \mathrm{g}^{-1}$ удовлетворительно согласуется в пределах точности с экспериментально определенной величиной [18].

На основе приведенных выше данных можно также определить величину смещения температуры фазового перехода $Pmcn \rightarrow P2_1cn$ под влиянием электрического поля, воспользовавшись для этого "электрическим" уравнением Клапейрона–Клаузиуса $dT_1/dE = -(\delta P_y/\delta H_1)T_1$ [26]. К сожалению, мы не располагаем сведениями об экспериментальном исследовании зависимости $T_1(E)$. Однако из сопоставления расчетных (для T_1) и экспериментальных (для T_2) данных следует, что высокотемпературный фазовый переход $(dT_1/dE = 1 \cdot 10^{-7} \text{ K} \cdot \text{m} \cdot \text{V}^{-1})$ является более "устойчивым" по отношению к воздействию электрического поля, чем превращение $P2_1cn \rightarrow P2_1/c12$ $(dT_2/dE = 20 \cdot 10^{-7} \text{ K} \cdot \text{m} \cdot \text{V}^{-1}$ [27]).

В соответствии с данными рентгеноструктурных исследований NLS тетраэдры SO₄ в сегнетоэластической фазе полностью упорядочены. Таким образом, структурное превращение $P2_1cn \rightarrow P2_1/c11$ представляет собой переход между упорядоченными фазами, и соответствующее изменение энтропии должно быть существенно меньше $R \ln 2$. С другой стороны, обе пространственные группы, являясь подгруппами фазы Pmcn, не связаны между собой соотношением группа-подгруппа, и поэтому рассматриваемое структурное превращение обусловлено двумя неприводимыми представлениями и должно быть ярко выраженным переходом первого рода [1]. Полученные нами экспериментальные результаты согласуются с моделью преобразования структуры. Полное изменение энтропии $\Delta S_2 = 1.33 \pm 0.04 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

(0.16 R) оказалось действительно небольшим и характерным для превращений типа смещения. Соотношение же между изменением энтальпии в точке перехода и полным ее изменением $\delta H_2/\Delta H_2 = 0.81$ свидетельствует о значительной удаленности перехода $P2_1cn \rightarrow P2_1/c11$ от трикритической точки в отличие от перехода при T_1 .

Согласно (1), в соответствии с [28] поведение избыточной теплоемкости ниже T_2 должно удовлетворять следующему выражению:

$$\left(\frac{\Delta C_p}{T}\right)^{-2} = \left(\frac{2\sqrt{B^2 - 3A'C}}{A_T^2}\right)^2 + \frac{12C}{A_T^3}(T_2 - T).$$
 (6)

Здесь в соответствии с (4) $B = (4B_1 + B_2), A' = A_T(T_2 - T_c)$. Как видно из рис. 5, *a*, квадрат обратной избыточной теплоемкости действительно является линейной функцией температуры в довольно широком интервале T_2-15 К. Это позволило определить некоторые соотношения коэффициентов потенциала (1) $A_T^2/B = 1.7 \cdot 10^{-2} \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-2}, A_T^3/C = 1.2 \cdot 10^{-2} \text{ J}^2 \cdot \text{mol}^{-2} \cdot \text{K}^{-3}$ и величину $T_2 - T_c = B^2/4A_TC = 10$ К. Степень близости перехода первого (B < 0) рода к трикритической точке определена с использованием выражения [28] $N = (B^2/(3A_TCT_c))^{1/2} = -0.22$.

Согласно (3), (4), изменение энтропии δS_2 связано со скачкообразным появлением при T_2 нового параметра перехода $(\eta_1^2 + \eta_2^2)$. Соответствующая величина скачка объема $\delta V_2/V = -4.6 \cdot 10^{-4}$ была рассчитана по уравнению Клапейрона–Клаузиуса с использованием данных о влиянии гидростатического давления $dT_2/dp = -26$ K/GPa [1]. Таким образом, в NLS при фазовых переходах $Pmcn \rightarrow P2_1cn (\delta V_1/V = -4.0 \cdot 10^{-4})$ и $P2_1cn \rightarrow P2_1/c11$ имеют место близкие по величине и противоположные по знаку изменения объема элементарной ячейки.

Исследования упругости и оптических свойств показали, что фазовый переход $Pmcn \rightarrow P112_1/n$ в CLS удовлетворительно описывается в рамках феноменологической теории Ландау [29]. Мы выполнили подобный анализ для температурной зависимости теплоемкости этого кристалла. Оказалось, что поведение квадрата обратной избыточной теплоемкости CLS вблизи T_0 соответствует (6) (рис. 5, b). Из этого же рисунка видно, что подобная зависимость для CNLS не выполняется. Вполне вероятно, что причина отклонений связана с тем, что хотя соединение CNLS было охарактеризовано как кристаллическое, добавки аммонийного иона могли сыграть роль примеси, приводящей к размытию фазового перехода и искажению реальной зависимости избыточной теплоемкости.

Что касается энтропий фазовых переходов в CLS $(\Delta S_{\text{CLS}} = 1.66 \pm 0.13 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$ и CNLS $(\Delta S_{\text{CNLS}} = 2.24 \pm 0.23 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$, то, как видно, различие между ними несколько больше ошибки их определения. Одна из причин увеличения ΔS может быть связана с приближением перехода в твердом растворе к тройной

Рис. 5. Зависимость от температуры квадрата обратной избыточной теплоемкости кристаллов NLS (a) и CNLS (1), CLS (2) (b).

точке на линии T(x) [3], определяющей стабильность фазы *Ртсп*.

Как уже отмечалось, в RLS отнесение тепловых эффектов к отдельным фазовым переходам затруднено ввиду близости их по температуре. Однако в структуре RLS в определенных интервалах температур существуют сегнетоэластические фазы $P2_1/c11$ и $P112_1/n$, которые также реализуются соответственно в NLS и CLS. Изменения энтропии, связанные с одним и тем же моноклинным искажением $P2_1/c11$, оказываются относительно невелики, но все же суммарная величина существенно больше в NLS ($\Delta S_1 + \Delta S_2 =$ $= 4.24 \pm 0.42 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$), чем в RLS ($\Delta S_1 + \Delta S_2 + \Delta S_3 = 2.08 \pm 0.20 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$). Причем разность энтропий намного превышает погрешность их определения. С другой стороны, возникновение моноклинной фазы $P112_1/n$ в CLS $(1.66 \pm 0.16 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$ и RLS $(\Delta S_1 + \Delta S_2 + \Delta S_3 + \Delta S_4 = 2.25 \pm 0.22 \,\mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1})$ coпровождается более близкими по величине изменениями энтропии.

Выяснению механизмов фазовых переходов в кристаллах со структурой α -K₂SO₄ и β -K₂SO₄ посвящено немало экспериментальных и теоретических работ [1,2,7]. Во многих случаях исследователи склоняются к следующему представлению: тетраэдры SO₄, разупорядоченные по четырем положениям в фазе α -K₂SO₄ и по двум в фазе β -K₂SO₄, в результате фазовых превращений упорядочиваются и имеют в разных искаженных фазах с симметрией ниже *Pmcn* одно положение, т.е. фазовые переходы из α - и β -фаз должны являться превращениями типа порядок-беспорядок. В соответствии с простыми модельными представлениями их последовательность должна сопровождаться изменениями энтропии $R(\ln 2 + \ln 2)$.

С другой стороны, известные нам экспериментальные данные далеко не всегда соответствуют ожидаемой большой величине *ΔS*. Неоднократными измерениями надежно установлено [1], что только в K₂SO₄, испытывающем лишь переход $G_0 \rightarrow G_1$ (*Pmcn*), величина ΔS действительно равна R ln 4. Иная ситуация наблюдалась в K₂SeO₄, где этот же фазовый переход характеризуется вдвое меньшей величиной измерения энтропии $\Delta S = R \ln 2$ [2] и, по-видимому, сопровождается частичным упорядочением тетраэдров. Однако при дальнейшем понижении температуры этот кристалл претерпевает три последовательных фазовых перехода [1], для которых изменения энтропии оказались совсем небольшими (< 0.1 R) и, скорее, свидетельствующими в пользу механизма незначительного смещения атомов, а не их упорядочения при реализации симметрии ниже Ртсп. Данное предположение подтверждает и обнаружение мягкой моды в β-фазе этого кристалла [1].

Как уже упоминалось, в кристаллах $A \operatorname{LiSO}_4 \alpha$ -фаза не реализуется вплоть до температуры плавления или разложения. В таблице суммированы данные об изменении энтропии при фазовых переходах из орторомбической фазы Pmcn в кристаллах, исследованных в [4,14] и настоящей работе. Главной особенностью является то, что, за исключением TLS, все определенные разными методами изменения энтропии ΔS существенно меньше величины $R \ln 2 \approx 0.7 R$, ожидаемой в случае, когда в фазе Pmcn тетраэдры SO₄ занимают два эквивалентных положения.

Следует обратить внимание на то, что род фазового перехода и степень близости его к трикритической точке оказались разными для различных соединений $A \operatorname{LiSO}_4$. Искажение структуры Pmcn происходит в CLS и CLNS в результате превращения второго рода, а в остальных кристаллах — первого рода. Причем, по данным [4], в TLS полное изменение энтропии, равное $R \ln 2$, происходит в узкой области вблизи T_0 и соответственно удаленность перехода от трикритической точки весьма велика (по крайней мере, по сравнению с NLS).

Известно [13], что при переходах второго рода возможны сильные корреляции, возникающие в исходной фазе задолго до температуры перехода. Структурная модель разупорядоченных тетраэдров в CLS была принята в [9], так как учет анизотропии тепловых колебаний привел к улучшению величины *R*-фактора. Теоретические исследования методом Монте-Карло модели

Термодинамические параметры фазового перехода ($\Phi\Pi$) из фазы *Ртсп* в кристаллах *A* LiSO₄

Кристалл	<i>T</i> ₁ , K	$\Delta S_1/R$	Род ФП	Литературная ссылка
NLS	461	0.35	Ι	Наст. раб.
RLS	475	0.25	Ι	» »
CNLS	207	0.27	II	» »
CLS	202	0.20	II	[14]
TLS	288	0.69	Ι	[4]

порядок-беспорядок (модель четырех состояний [1]) применительно к последовательным фазовым переходам $P6_3/mmc \rightarrow Pmcn \rightarrow P112_1/n$ в CLS выполнены в [2] в предположении, что в кристалле существует гексагональная фаза, не обнаруженная экспериментально. Установлено, что наличие сильных короткодействующих корреляций тетраэдров в разупорядоченной гексагональной и частично упорядоченной орторомбической фазах, обусловленных конкурирующей природой взаимодействий между тетраэдрами, приводит к уменьшению энтропии переходов более чем в 2 раза по сравнению с $R \ln 2$. Этот результат удовлетворительно согласуется с экспериментальной величиной изменения энтропии для CLS (см. таблицу).

С другой стороны, все выглядит не так однозначно при рассмотрении данных других исследователей, анализировавших конкурирующие модели структуры кристаллов A LiSO₄. Так, например, в [11] обнаружено, что наиболее удовлетворительной для RLS является модель ангармонических колебаний тетраэдров. Однако предпочтение отдано модели их разупорядочения по двум положениям в соответствии с наблюдением двух максимумов на картах распределения электронной плотности атомов кислорода. С другой стороны, наиболее аргументированными выглядят данные работы [12], где был выполнен, с нашей точки зрения, наиболее тщательный анализ структуры. Авторы обнаружили факты, свидетельствующие о разной степени ангармонизма колебаний тетраэдров SO₄ в фазе *Ртсп* кристаллов NLS, RLS и RCLS. При исследовании карт электронной плотности в NLS установлено, что атом кислорода действительно имеет два положения равновесия, связанных между собой поворотом группы SO₄. При переходе в фазу G₂ он упорядочивается в одном из положений. В рубидиевом аналоге наблюдалась та же (хотя и менее ярко выраженная) ситуация. Но небольшие добавки цезия ($\sim 9 \, \text{mol.\%}$) существенно меняют в структуре RCLS распределение электронной плотности в окрестностях атома кислорода [12]: "двупичие", соответствующее двум положениям кислорода, исчезает. На основе структурных данных были рассчитаны параметры двухминимумного потенциала, в котором колеблется правильный жесткий тетраэдр. Оказалось, что только для NLS высота потенциального барьера $1.2 k_B T_1$ позволяет отнести переход из фазы Ртсп к "чистым" превращениям типа порядок-

беспорядок. В сегнетоэлектрической фазе потенциал становится асимметричным и стабильная конфигурация тетраэдра соответствует одной из конфигураций разупорядоченной фазы. Высота барьера в RLS составляет лишь $0.75 k_B T_1$, что свидетельствует о значительном уменьшении ангармонизма колебаний тетраэдров при замещении тетраэдрического катиона сферическим. Но наиболее примечательным является то, что при частичном замещении иона Rb существенно более крупным Cs в соединении RCLS ($Rb_{0.9}Cs_{0.1}LiSO_4$) высота потенциального барьера уменьшается почти в 4 раза $(< 0.2 k_B T_1)$. Эти факты свидетельствуют о разной степени ангармонизма колебаний критических ионов в каждом из кристаллов, что, безусловно, должно отразиться на величине энтропии фазового перехода. Из таблицы видно, что изменения величины ΔS от образца к образцу соответствуют этой гипотезе: с ростом размера катиона энтропия перехода уменьшается. Таким образом, увеличение ионного радиуса катиона в ряду соединений A LiSO₄ (NH₄⁺ (1.43 Å) \rightarrow Rb⁺ (1.48 Å) \rightarrow Cs⁺ (1.65 Å)) может, по-видимому, подавлять разупорядочение тетраэдров SO₄.

Список литературы

- К.С. Александров, Б.В. Безносиков. Структурные фазовые переходы в кристаллах (семейство сульфата калия). Наука, Новосибирск (1993). 287 с.
- [2] N.G. Zamkova V.I. Zinenko. J. Phys.: Cond. Matter 6, 43, 9043 (1994).
- [3] С.В. Мельникова, В.А. Гранкина. ФТТ 46, 3, 500 (2004).
- [4] H. Mashiyama, J. Wu, F. Shimizu, M. Takashige. J. Phys. Soc. Jap. 67, 1, 359 (1998).
- [5] A. Elfakir, J.-P. Souron, G. Wallez, M. Quarton, M. Touboul. Solid State Ion. 110, 145 (1998).
- [6] H. Kasano, Sh. Tsuchiyama, Y. Kawamura, H. Mashiyama. Ferroelectrics 217, 121 (1998).
- [7] V.I. Zinenko, N.G. Zamkova. Phys. Rev. B 57, 1, 211 (1998).
- [8] G.M. Loiacono, M. Delfino, W.A. Smith, M.I. Bell, A. Shaulov, Y.H. Tsuo. Ferroelectrics 23, 89 (1980).
- [9] А.И. Круглик, М.А. Симонов, Е.П. Железин, Н.В. Белов. ДАН СССР 247, 6, 1384 (1979).
- [10] K. Itoh, H. Ishikura, E. Nakamura. Acta Cryst. B 37, 664 (1981).
- [11] W. Steurer, H. Wittmann, H. Jagodzinski, A. Pietraszko. Acta Cryst. B 42, 11 (1986).
- [12] K. Hasebe, T. Asahi. Phys. Rev. B 41, 10, 6794 (1990).
- [13] В.Г. Вакс. Введение в теорию сегнетоэлектриков. Наука, М. (1973). 328 с.
- [14] А.И. Круглик, К.С. Александров, О.В. Розанов, И.М. Искорнев, Л.И. Жеребцова, И.Н. Флёров. ФТТ 22, 12, 3673 (1980).
- [15] С.В. Мельникова, А.В. Карташев, В.А. Гранкина, И.Н. Флёров. ФТТ 45, 8, 1497 ((2003).
- [16] С.В. Мельникова, А.В. Карташев, В.А. Гранкина. ФТТ 44, 2, 365 (2002).
- [17] И.Н. Флёров, И.М. Искорнев. Метрология 1, 21 (1979).
- [18] И.М. Искорнев, И.Н. Флёров. ФТТ 19, 4, 1040 (1977).

- [19] M. Gaafar, M.E. Kassem, S.H. Kandil. Solid State Commun. 115, 509 (2000).
- [20] X. Solans, J. Mata, M.T. Calvet, M. Font-Bardia. J. Phys.: Cond. Matter 11, 8995 (1999).
- [21] M.L. Martinez Sarrion, L. Mestres, A.A. Bakkali, E.H. Bocanegra. Mater. Res. Bull. 33, 2, 269 (1998).
- [22] J.E. Diosa, G.M. Aparicio, R.A. Vargas, J.F. Jurado. Phys. Stat. Sol. (b) 220, 651 (2000).
- [23] V.I. Torgashev, V. Dvorak, F. Smutny. Phys. Stat. Sol. (b) 126, 459 (1984).
- [24] T. Mitsui, T. Oka, Y. Shiroishi, M. Takashige, K. Ito, Sh. Sawada. J. Phys. Soc. Jap. 39, 3, 845 (1975).
- [25] С.Р. Гарбер, Л.А. Смоленко. ЖЭТФ 55, 6 (12), 2031 (1968).
- [26] Г.А. Смоленский, В.А. Боков, В.А. Исупов, Н.Н. Крайник, Р.Е. Пасынков, М.С. Шур. Сегнетоэлектрики и антисегнетоэлектрики. Наука, Л. (1971). 476 с.
- [27] Н.Р. Иванов, Л.Ф. Кирпичникова. Изв. АН СССР. Сер. физ. 51, 12, 2216 (1987).
- [28] К.С. Александров, И.Н. Флёров. ФТТ 21, 2, 327 (1979).
- [29] А.Т. Анистратов, А.В. Замков, Л.А. Кот, И.Н. Столовицкая, Л.А. Шабанова. ФТТ 24, 9, 2763 (1982).