04;06;07;11 Модификация состава поверхности и спектра фотолюминесценции пористого кремния в процессе аргонно-кислородной ионно-плазменной обработки

© Б.М. Костишко, А.В. Дроздов, Р.V. Shibaev, А.Е. Костишко

Ульяновский государственный университет Copenhagen University, Fruebjergvej 3, DK-2100, Copenhagen, Denmark

Поступило в Редакцию 22 мая 2000 г.

Представлены результаты исследований изменения состава поверхности и спектра фотолюминесценции пористого кремния после ионно-плазменного травления в аргонно-кислородной смеси. Показано, что подобная обработка приводит к пассивации поверхности квантовых нитей фтором и образованию оксида кремния. Источником атомов фтора выступают молекулы HF, оставшиеся в объеме пор после формирования системы пор. Увеличение концентрации фтора сопровождается возгоранием сине-зеленой и уширением красной полос фотолюминесценции пористого кремния.

Роль молекул, пассивирующих поверхность квантовых нитей и заполняющих объем пор, в светоизлучающих свойствах пористого кремния (por-Si) изучается весьма активно на протяжении более десяти лет [1]. Первоначально данные о термостимулированном изменении в вакууме состава водородных групп (моно- и дигидридов) в por-Si и очевидная взаимосвязь деструкции SiH₂ и гашения фотолюминесценции (ФЛ) пористого кремния [2,3] выступили в качестве главного аргумента против квантово-размерной модели Кэнхэма [4]. Впоследствии оказалось, что не только водородные [5], но также и кислородосодержащие соединения могут приводить к возгоранию ФЛ por-Si [6]. Таким образом, постепенно сформировались так называемые "водородная" и "интерфейсная" модели [1,7]. Однако ни одна из существующих на настоящий момент моделей не учитывает всей совокупности сложнейших процессов в пористом кремнии и поэтому не описывает полностью все механизмы, ответственные за его светоизлучающие и деградационные свойства. Так, например, в работе [8] было показано, что заполнение пор

52

диэлектрической средой или полярными молекулами может приводить к уменьшению интенсивности фотолюминесценции за счет изменения энергии связи или концентрации экситонов, существенный вклад которых в ФЛ рог-Si теоретически был предсказан еще в 1992 г. [9]. В то же время зависимость свойств рог-Si от наличия на его поверхности фторосодержащих соединений изучена крайне мало, хотя достоверно доказано, что фотолюминесценция возбуждается преимущественно в окисле, обогащенном в том числе и ионами F⁻ и SiF⁻ [10].

В связи с этим данная работа посвящена изучению при помощи электронной Оже-спектроскопии (ЭОС) изменения состава поверхности пористого кремния в результате ионно-плазменной обработки в аргоннокислородной смеси. В работе также приводятся данные об изменении спектров фотолюминесценции в результате ионно-плазменного окисления и фторирования.

В экспериментах использовались образцы por-Si, созданные по стандартной технологии десятиминутным электрохимическим травлением в электролите, содержащем HF и C_2H_5OH . Пористость и толщина пористого слоя в этом случае были 45% и 6 μ m соответственно.

Ионно-плазменное травление пористого кремния проводилось в вакуумной установке ВУП-5. Давление аргона и остаточного кислорода в камере поддерживалось равным $2.6 \cdot 10^{-2}$ Ра, напряжение и ток разряда плазмы составляли 2.5 kV и 25 mA соответственно, нагрев образца при этом не превышал 5°С. Часть образца в процессе ионноплазменной обработки закрывалась маской. В качестве маски служила та же пластина монокристаллического кремния, на которой формировался исследуемый пористый кремний. Химический состав поверхности образцов контролировался при помощи Оже-спектрометра 09ИОС-10-005, имеющего энергоанализатор с разрешением $\Delta E/E = 0.4\%$, при следующих режимах: остаточное давление в аналитической камере $P = 10^{-7}$ Ра, энергия первичных электронов 3 keV, ток электронов в пучке $i = 0.5 \mu$ A.

Как видно из рис. 1, состав поверхности пористого кремния в процессе ионно-плазменной обработки существенно модифицируется. Оже-спектр исходного свежеприготовленного por-Si (линия a) показывает наличие в составе поверхности элементного кремния Si (el)-LVV-линия (91 eV), а также углерода и кислорода в качестве поверхностных загрязнений. Наличия атомов фтора в этом случае зафиксировано не было, что позволяет утверждать о его присутствии на поверхности

Рис. 1. Оже-спектры: a — исходного рог-Si; образца с пористым слоем толщиной 6 μ m после ионно-плазменной обработки в течение: b — 1 min, c — 13 min. Линии d соответствует спектр образца с пористым слоем 32 μ m после 20 min ионно-плазменного травления. Символом Si(ox) обозначен LVV-пик окисленного кремния.

рог-Si в концентрациях, не превышающих предельной чувствительности Оже-спектрометра (0.05 at%). Однако сразу после ионно-плазменного травления в Оже-спектре наблюдается сдвиг линии кремния в область 75 eV (линия b), что свидетельствует об эффективном окислении поверхности и образовании тонкого слоя SiO_x. Важным является то, что присутствие окисла наблюдается как на участках, подвергавшихся непосредственному контакту с плазмой, так и на участке, закрытом маской. Однако только на участках, контактировавших с плазмой, в

$$I_{\rm F}^* = I_{\rm F} / \sum_{i=1}^n I_i. \tag{1}$$

Интенсивности Оже-пиков для осуществления нормировки измерялись по методике peak-to-peak.

Объяснением наблюдавшихся в эксперименте эффектов может служить протекание в пористом слое следующего комплекса процессов и реакций. На первом этапе молекулы фтористоводородной кислоты (HF), которые остаются после электрохимического травления вблизи остриев пор [11], окисляются радикалами кислорода О*, присутствующими в плазме, по реакции

$$2HF + O^* = H_2O + F_2.$$
 (2)

Кроме этого, радикалы кислорода ответственны за быстрое окисление поверхности квантовых нитей. Косвенным доказательством тому, что окисление происходит за счет электрически нейтральных частиц, является фронтальное окисление участков por-Si, закрытых маской.

Одновременно с окислением HF происходит образование ненасыщенных связей кремния за счет распыления поверхности рог-Si ионами аргона. Именно благодаря наличию оборванных связей радикалы фтора имеют возможность пассивировать поверхность образца. Доказательством этому является отсутствие Оже-пика фтора на участке образца, находившемся в процессе ионно-плазменной обработки под маской, т. е. в условиях, когда ионная бомбардировка и соответственно образование оборванных связей не происходят.

Роль радикалов кислорода в образовании газообразного фтора была проверена на образцах por-Si с пористым слоем толщиной $32 \,\mu$ m. Очевидно, что в случае глубоких пористых слоев ионная стимуляция разрушения молекул фтористоводородной кислоты исключена. Однако и в этом случае ионно-плазменное фторирование поверхности квантовых нитей наблюдалось (линия *d*, рис. 1).

Количество фтора, содержащегося в объеме пористого слоя, ограничено и зависит от условий изготовления и предыстории образца.

Поэтому кинетику изменения концентрации фтора $N_{\rm FS}$ на поверхности por-Si можно описать следующим уравнением:

$$dN_{\rm FS}/dt = -\sigma j_{\rm Ar}N_{\rm FS} + k_{\rm C}N_{\rm Fr}N_{\rm FG}, \qquad (3)$$

где $j_{\rm Ar}$ и σ — поток ионов и сечение их взаимодействия с фтором на поверхности; $N_{\rm Fr}$ и $N_{\rm FG}$ — концентрации оборванных связей на поверхности рог-Si и фтора в газе соответственно; $k_{\rm C}$ — коэффициент, характеризующий скорость пассивации фтором оборванных связей кремния.

Точное решение (3) невозможно из-за отсутствия данных о входящих в него параметрах. Однако в первом приближении можно считать, что концентрация атомов фтора в газе меняется немонотонно — до определенного времени t_0 , пока не израсходован источник F в объеме пор, будет происходить рост N_{FG} , а затем при $t > t_0$ — спад. Тогда для иллюстрации применимости предложенной модели при нахождении аналитического решения (3) второе слагаемое можно выбрать в следующем виде:

$$k_{\rm C}N_{\rm Fr}N_{\rm FG} = \begin{cases} B(1 - \exp(-t/\tau_1)), & t \le t_0\\ \exp[-(t-t_0)/\tau_2]B(1 - \exp(-t_0/\tau_1)), & t \ge t_0 \end{cases}, \quad (4)$$

где τ_1 и τ_2 — характерные времена возрастания и спада концентрации атомов фтора в плазме. С учетом (4) решение (3) можно найти в общем виде:

$$N_{\rm FS} = \begin{cases} A_1 + A_2 \exp(-t/\tau_1) - A_3 \exp(-\sigma j_{\rm Ar}t), & t \le t_0 \\ B_1 \exp[-(t-t_0)/\tau_2] + B_2 \exp(-\sigma j_{\rm Ar}t), & t \ge t_0 \end{cases}.$$
 (5)

В (5) предэкспоненциальные множители зависят как от параметров уравнений (3) и (4), так и от времени t_0 . Для иллюстрации применимости предлагаемой модели на рис. 2 сплошной линией приведена аппроксимация экспериментальных данных в соответствии с (5) и следующими значениями характерных времен $\tau_1 = 6.8 \text{ min}$ и $\tau_2 = 52 \text{ min}$. Как видно, наблюдается достаточно хорошее согласование модельных расчетов с экспериментальными результатами.

Спектры фотолюминесценции por-Si после ионно-плазменной обработки представлены на рис. 3. Анализ этих спектров позволил сделать

Рис. 2. Зависимость отнормированной интенсивности Оже-пика фтора от времени ионно-плазменной обработки.

следующие выводы о роли фтора в светоизлучающих свойствах пористого кремния. Увеличение концентрации фтора в плазме и фторирование поверхности квантовых нитей ($t < t_0$) сопровождается ростом синезеленой полосы $\Phi\Pi$ ($\lambda_{GB} = 480-490$ nm), а также гашением красной полосы ($\lambda_R = 670-680$ nm) и увеличением ее ширины (линии 1-3, рис. 3). Так, если после 1 min ионно-плазменного травления в аргоннокислородной смеси соотношение интенсивностей сине-зеленой и красной спектральных линий составляло $I_{GB}/I_R = 0.04$, то после 6 min обработки это соотношение увеличилось до 0.3. Дисперсия красной линии за это же время возросла в 1.5 раза. Выработка источника фтора и уменьшение его концентрации на поверхности рог-Si приводит к прямо противоположным изменениям в спектре ФЛ (линия 3, рис. 3). Одновременно с этим форма красной линии в спектре ФЛ становится гауссовой.

Рис. 3. Спектры ФЛ рог-Si: *1* — свежеприготовленного; подвергшегося ионноплазменной обработке в течение: *2* — 3, *3* — 6, *4* — 20 min.

Таким образом, в работе показано, что бомбардировка поверхности свежеприготовленного пористого кремния ионами аргона в плазме, содержащей радикалы кислорода, сопровождается ее эффективным фторированием. Основными условиями протекания этого процесса является образование свободных атомов фтора в процессе окисления молекул HF, присутствующих в объеме пор, а также появление оборванных связей на поверхности рог-Si за счет распыления его поверхности ионами Ar⁺.

Фторирование поверхности por-Si сопровождается формированием центров излучательной рекомбинации с энергией $E \approx 2.58$ eV. Последующее дефторирование окисленной поверхности квантовых нитей в процессе ионно-плазменного травления приводит к тому, что излуча-

тельная рекомбинация электронно-дырочных пар начинает происходить преимущественно в тонком интерфейсном слое кремний–оксид кремния. В этом случае расположение и форма полосы спектра ФЛ определяются не размерами и структурой квантово-размерных областей, а характеристиками нестехиометрического слоя в окисле, и в частности шириной его запрещенной зоны [7].

Работа финансировалась грантами РФФИ № 99–02–17903, "Университеты России — фундаментальные исследования" и Минобразования.

Список литературы

- Cullis A.G., Canham L.T., Calcoft P.D.J. // J. Appl. Phys. 1997. V. 82. N 3. P. 909–965.
- [2] Tsai C., Li K.-H., Sarathy J. et al. // Appl. Phys. Lett. 1991. V. 59. P. 2814–2816.
- [3] Tsai C., Li K.-H., Kinosky D.S. et al. // Appl. Phys. Lett. 1992. V. 60. P. 1700– 1702.
- [4] Canham L.T. // Appl. Phys. Lett. 1990. V. 57. P. 1046-1048.
- [5] Костишко Б.М., Орлов А.М., Миков С.Н. и др. // Неорган. материалы. 1995. Т. 31. № 4. С. 444–446.
- [6] Nakajima A., Itakura T., Watanabe S. et al. // Appl. Phys. Lett. 1991. V. 61. N 1. P. 46–48.
- [7] Yoshishiko K., Tetsuo O., Kenji Sh. et al. // Phys. Rev. B. 1993. V. 48. N 7. P. 4883–4886.
- [8] Кашкаров П.К., Константинова Е.А., Тимошенко В.Ю. // ФТП. 1996.
 Т. 30. В. 8. С. 1479–1490.
- [9] Sanders G.D., Yia-Chung Chang // Phys. Rev. B. 1992. V. 45. N 16. P. 9202– 9213.
- [10] Корсунская Н.Е., Торчинский Т.В., Джумаев Б.Р. и др. // ФТП. 1996. Т. 30. В. 8. С. 1507–1515.
- [11] Компан М.Е., Шабанов И.Ю. // ФТП. 1995. Т. 2. В. 10. С. 1250–1260.