02;04

Изменение характеристик флуктуаций параметров пристеночной плазмы токамака ФТ-2 при переходе в режим улучшенного удержания

© Е.О. Векшина, П.Р. Гончаров, С.В. Шаталин, В.Н. Будников, Л.А. Есипов, Е.Р. Итс, С.И. Лашкул

С.-Петербургский государственный технический университет Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург

Поступило в Редакцию 24 мая 2000 г.

Для изучения процессов в пристеночной плазме токамака при переходе в режим улучшенного удержания под действием нижнегибридного нагрева использовалась усовершенствованная зондовая диагностика на основе подвижных многоэлектродных зондов Лэнгмюра. Полученные экспериментальные данные демонстрируют эффект подавления корреляции и когерентности флуктуаций плотности плазмы и электрического поля, а также уменьшения поперечного переноса частиц, вызванного флуктуационными дрейфовыми потоками.

Многочисленные эксперименты показывают, что существование периферийных широкополосных микроскопических флуктуаций является общим свойством тороидальных установок с магнитным удержанием плазмы. С помощью различных диагностик обнаруживаются колебания плотности частиц, потенциала, электрического и магнитного полей, причем характеристики этих колебаний (локализация на периферии плазменного шнура, диапазон частот, уровни относительных флуктуаций и т.п.) на разных установках оказываются в достаточной степени подобными. Именно с микроскопической турбулентностью плазмы обычно связывают аномальные потери энергии в токамаках [1].

Экспериментальные исследования периферийных процессов в плазме токамака необходимы для создания надежной теоретической модели аномального поперечного переноса частиц и энергии. Эти исследования приобретают особый интерес в связи с обнаружением и интенсивным изучением режимов с улучшенным удержанием плазмы (Н-режимов), подчеркнувшим тесную связь между переферийными процессами (в част-

52

ности — характером микротурбулентности на периферии и связанных с ней потоков частиц) и параметрами плазмы в основном объеме токамака (см., например, [12]).

На токамаке ФТ-2 (R = 0.55 m, a = 0.08 m, $B_{tor} = 2.2$ T, $I_{pl} = 22$ kA) переход в режим с улучшенным удержанием был обнаружен в экспериментах по дополнительном нагреву плазмы электромагнитными волнами нижнегибридного диапазона ($f = 920 \text{ MHz}, P \leq 150 \text{ kW}$). Переход наиболее четко фиксировался после выключения импульса нижнегибридного нагрева (НГН) [3]. Получение экспериментальных сведений о сопровождающих этот переход процессах в периферийной зоне токамака являлось целью настоящих исследований. Особое внимание уделялось изучению поведения флуктуационных дрейфовых потоков частиц и эволюции характеристик флуктуаций. Поток частиц в пристеночной области токамака есть результат суммирования диффузионного потока с плотностью $\Gamma_D = -D \operatorname{grad} n (D - -)$ эффективный коэффициент диффузии, *п* — плотность частиц) и потока, связанного с дрейфом заряженных частиц в скрещенных электрическом (E) и магнитном (B)полях, который, в свою очередь, может быть представлен в виде суммы квазистационарной $\Gamma_0(t) = cn(t)[\mathbf{E}_0(t), \mathbf{B}]/B^2$ и флуктуационной составляющих. Флуктуационные потоки вызваны корреляцией колебаний плотности плазмы $n^{(\sim)}$ и электрического поля $\mathbf{E}^{(\sim)}$:

$$\mathbf{\Gamma}_{fl}(t) = \frac{c}{B^2} \left[\left\langle n^{(\sim)}(t) \mathbf{E}^{(\sim)}(t) \right\rangle, \mathbf{B} \right], \tag{1}$$

где угловые скобки указывают на усреднение величины по времени.

Флуктуационные потоки представляют собой один из основных механизмов поперечного переноса частиц в периферийной зоне тороидальных установовк. Так, в частности, эксперименты на токамаке ФТ-2 показали, что в омическом режиме они могут обеспечивать до (60...100)% суммарного радиального потока частиц [4]. Для изучения характеристик флуктуаций пристеночной плазмы, измерения потоков частиц и их относительного вклада в интегральный радиальный перенос в условиях НГН потребовалось применение новой, усовершенствованной по сравнению с [4], зондовой диагностики.

Модернизированный измерительный тракт позволил удовлетворить таким важным условиям, как широкий диапазон рабочих частот, и возможность достоверных измерений во время импульса НГН. Методика измерений основана на использовании трех подвижных пятиэлектрод-

ных зондов Лэнгмюра [4,5], расположенных в одном поперечном сечении камеры и позволяющих получать данные в области тени диафрагмы, полностью охватывающей полоидальный обход тора. Помехоустойчивость измерительного тракта во время импульса НГН обеспечена тщательным симметрированием входных импедансов и применением широкополосных дифференциальных усилительных каскадов. Диагно-

Рис. 1. Временная эволюция: *а* — интегрального радиального флуктуационного потока частиц; *b* — коэффициента корреляции флуктуаций $n^{(\sim)}$ и $\mathbf{E}^{(\sim)}$ в тени диафрагмы для трех угловых положений: $1 - \Theta = 0^{\circ}$, $2 - \Theta = 60^{\circ}$, $3 - \Theta = 30^{\circ}$. Полоидальный угол Θ отсчитывается от внешнего обвода тора в сторону тороидального дрейфа электронов. Сплошными вертикальными линиями показано положение во времени импульса нижнегибридного нагрева (LHH).

стика позволяет находить временную эволюцию локальных значений электронной температуры, плотности и потенциала плазмы; регистрировать флуктуации этих параметров в полосе частот до 500 kHz; а также определять локальные плотности квазистационарных и флуктуационных дрейфовых потоков. Флуктуационная составляющая потока может быть измерена с помощью как аналоговой, так и цифровой аппаратуры. Блок аналоговой обработки выполняет перемножение флуктуационных составляющих сигналов ионного тока насыщения на зонд и разности потенциалов двух симметрично расположенных плавающих электродов с последующим усреднением. Цифровая аппаратура позволяет записывать реализации исходных сигналов с тактовой частотой 1 MHz.

В ходе экспериментов измерены локальные плотности флуктуационных дрейфовых потоков с шагом $(20...30)^{\circ}$ по полоидальному углу и шагом 1 mm по малому радиусу (r). Основной объем данных получен с помощью аналоговой аппаратуры. Вычисленный по этим результатам интегральный радиальный поток Q_{rad} для r = 8 cm приведен на рис. 1, *а*. Видно, что переход в режим с улучшенным удержанием после выключения дополнительного нагрева сопровождается уменьшением величины этого потока приблизительно вдвое по сравнению с омическим режимом. В работе [6] отмечалось примерно двукратное увеличение энергетического времени жизни в режиме с улучшенным удержанием по сравнению с омическим режимом. Одним из важных факторов этого, возможно, является наблюдаемое уменьшение флуктуационных потоков.

Спектральные и корреляционные характеристики флуктуаций плотности плазмы и электрического поля изучались с помощью цифровой аппаратуры. Вычислялся статический коэффициент корреляции колебаний этих параметров $C_{n(\sim)E(\sim)}$, определяемый формулой (2) и характеризующий эволюцию флуктуационного потока частиц во времени, а также характеризующая вклад различных частот функция взаимной когерентности $\gamma^2(f)$, определяемая формулой (3):

$$C_{n^{(\sim)},E^{(\sim)}} = \frac{\langle n^{(\sim)}E^{(\sim)} \rangle - \langle n^{(\sim)} \rangle \langle E^{(\sim)} \rangle}{\sqrt{\langle n^{(\sim)^{2}} \rangle - \langle n^{(\sim)} \rangle^{2}} \sqrt{\langle E^{(\sim)^{2}} \rangle - \langle E^{(\sim)} \rangle^{2}}},$$

$$\gamma^{2}(f) = \frac{|n^{(\sim)}(f)E^{(\sim)}(f)|^{2}}{|n^{(\sim)}(f)|^{2}|E^{(\sim)}(f)|^{2}}.$$
(2)
(3)

Здесь $n^{(\sim)}(f)$ и $E^{(\sim)}(f)$ обозначают фурье-компоненты флуктуаций плотности и электрического поля.

Рис. 2. Временная эволюция локального спектра когерентности флуктуаций $n^{(\sim)}$ и $\mathbf{E}^{(\sim)}$ в тени диафрагмы в положении $\Theta = 0^{\circ}$.

Для вычисления $C_{n(\sim)E(\sim)}$ и $\gamma^2(f)$ регистрировались флуктуации $n^{(\sim)}$ и $\mathbf{E}^{(\sim)}$ в полосе частот 10–500 kHz. Эти измерения проводились на внешней стороне тороидального плазменного шнура в симметричном относительно экваториальной плоскости интервале ($\pm 60^{\circ}$) полоидальных углов с шагом 30°. Поведение коэффициента корреляции представлено на рис. 1, *b*. Коэффициент корреляции флуктуаций плотности плазмы и электрического поля в омическом режиме имеет характерную величину около 0.3 и спадает практически до нуля после импульса НГН. Эта тенденция имеет место при всех значениях полоидального угла, при которых проводились измерения.

Поведение функции когерентности в этой пространственной области также имеет одинаковый характер. В качестве примера на рис. 2 приводится ее временная эволюция в точке, лежащей на внешнем экваторе тора. В стационарной стадии разряда в омическом режиме функция когерентности имеет типичное значение около 0.5 в полосе частот

10-200 kHz и значения 0.1-0.2 для гармоник выше 200 kHz. Переход к улучшенному удержанию после импульса НГН соответствует спаду функции когерентности до значения около 0.1 во всей наблюдаемой полосе частот.

В экспериментах отмечен также эффект уменьшения интенсивности флуктуаций параметров плазмы в *H*-режиме, однако это имело место не при всех значениях полоидального угла. На внутреннем полоидальном обходе регистрировалось существенное уменьшение уровня флуктуаций, в то время как на внешней стороне тора интенсивность колебаний не испытывала заметных изменений, а в отдельных пространственных точках даже возрастала. Отметим, что подобное поведение периферийной турбулентности плазмы после выключения импульса НГ нагрева наблюдалось также с помощью рефлектометрических измерений [7]. Таким образом, эффект подавления флуктуаций носит локальный характер, в то время как спад когерентности и коэффициента корреляции зафиксирован во всех точках, где проводились измерения.

Итак, переход в режим улучшенного удержания на токамаке ФТ-2 после выключения импульса НГН сопровождается существенным уменьшением поперечного переноса частиц, вызванного флуктуационными дрейфовыми потоками в периферийной зоне. Это уменьшение связано, в основном, с эффектом подавления корреляции флуктуаций плотности плазмы и электрического поля и со спадом их когерентности. Экспериментальные наблюдения позволяют предположить, что перечисленные эффекты играют важную роль в механизме перхода в режим улучшенного удержания.

Работа выполнена при поддержке гранта Министерства общего и профессионального образования РФ конкурса 1997 г. и гранта РФФИ 97–02–18119.

Список литературы

- [1] Liewer P.C. // Nucl. Fusion. 1985. V. 25. N 5. P. 543-621.
- [2] Stott P.E., The JET Team // J. Nucl. Mater. 1989. V. 162-164. P. 3-11.
- [3] Будников В.Н., Дьяченко В.В., Есипов Л.А. и др. // Письма в ЖЭТФ. 1994. Т. 59. В. 10. С. 651–654.

- [4] Есипов Л.А., Сахаров И.Е., Чечик Е.О. и др. // ЖТФ. 1997. Т. 67. В. 4. С. 48-54.
- [5] Левицкий А.Н., Сахаров И.Е., Шаталин С.В. // ПТЭ. 1992. В. 5. С. 153–157.
- [6] Будников В.Н., Дьяченко В.В., Есипов Л.А. и др. // Письма в ЖТФ. 1997.
 Т. 23. В. 1. С. 52–57.
- [7] Будников В.Н., Дьяченко В.В., Есипов Л.А. и др. // Физика плазмы. 1995.
 Т. 21. № 10. С. 865–871.