05;12

Контролируемая процессами адсорбции и десорбции ионов низкочастотная диэлектрическая релаксация в 5ЦБ

© А.В. Ковальчук

Институт физики НАН Украины, Киев E-mail: akoval@iop.kiev.ua

Поступило в Редакцию 28 января 2000 г.

Экспозицией в постоянном и переменном электрическом поле созданы стабильные во времени состояния с разным значением ε' и ρ в планарно ориентированном 5ЦБ. Показано, что начальный участок низкочастотной дисперсии ε' и ε'' описывается уравнением Дебая как для строго планарной, так и для "наклонной" ориентации молекул.

В работах [1–4] было показано, что исследование частотных зависимостей ε' и ε'' слабых электролитов (жидкие кристаллы (ЖК) [1–3], глицерин [4], иммерсионное масло [5]) в области низких частот (f < 10 Hz) является эффективным методом изучения параметров и структуры двойных электрических слоев. В большинстве случаев начальный участок низкочастотной дисперсии ε' и ε'' аппроксимируется уравнением Дебая, модифицированным Коул-Коулом.

В работе [1] для планарно ориентированной жидкокристаллической смеси ЖК 1282 было впервые показано, что начало низкочастотной дисперсии ε' и ε'' описывается уравнением Дебая. Наши дальнейшие исследования показали, что дисперсия такого типа наблюдается только в планарно ориентированных нематических ЖК. Однако осталось невыясненным, будет ли наблюдаться низкочастотная дисперсия ε' и ε'' ,

1

Таблица 1. Условия получения состояний с разным значением ρ и ε' для 5 ЦБ

Состояние	Напряжение	U, V	T, K	Время экспозиции, h
0		0	295	4
1	Перем. 100 Hz	2.5	330	2
2	Постоян.	14	295	3
3	Постоян.	14	330	1

которая описывается уравнением Дебая, в случае не строго планарной ориентации молекул.

Задача этой работы заключалась в том, чтобы найти способы управления ориентацией молекул относительно поверхности электродов и исследовать влияние такой ориентации на параметры, которые характеризуют начальный участок низкочастотной дисперсии ε' и ε'' .

Для исследований применялся 5ЦБ. Конструкция измерительной ячейки и методы измерения ε' и ε'' были такими же, как в [1,2].

В работах [4,6] было показано, что длительная (более часа) экспозиция иммерсионного масла [6] или глицерина [4,6] в постоянном или переменном электрическом поле переводит образцы в новые стабильные во времени состояния с большей или меньшей проводимостью. При этом предполагалось, что переход в новое состояние обусловлен процессами адсорбции или десорбции ионов в приэлектродной области. Для ЖК процессы адсорбции или десорбции ионов могут изменить кроме проводимости также и ориентацию молекул.

В табл. 1 приведены способы получения и названия состояний с разной ориентацией молекул и проводимостью. Следует отметить, что такие состояния образца (кроме *0*-состояния) не являются четко "фиксированными". Каждое состояние не является внутренней структурой образца. Параметры состояния задаются типом и длительностью внешнего воздействия.

В табл. 2 для каждого из состояний образца приведены значения ε' , удельного сопротивления образца ρ и значения параметров, которые характеризуют начальный участок дисперсии ε' и ε'' . Значения ε' и ρ определялись при частотах (f > 100 Hz), где низкочастотная дисперсия не проявлялась. Толщина приэлектродного слоя W, где происходят релаксационные процессы, которые описываются уравнением Дебая,

Письма в ЖТФ, 2000, том 26, вып. 19

Габлица 2	. Значен	ния	ρ,	ε'ı	и пар	аметров,	которые ха	аракте	ризуют нач	альный
участок ди	сперсии	ε'	И	ε'' ,	для	разных	состояний	5ЦБ	толщиной	$40\mu m$
Гемператур	a 295 K									

Состояние	ε_∞	$ ho \cdot 10^{-7}, \Omega \cdot \mathrm{m}$	$ au, { m s}$	$arepsilon_s$	$W, \mu m$
0	7.2	1.71			
1	5.2	1.36	0.26	2270	0.21
2	6.6	1.93	0.36	2210	0.28
3	10	2.90	0.54	2220	0.42

определялась, как и в [1-6], из соотношения

$$W = 2d\frac{\varepsilon_{\infty}}{\varepsilon_s},\tag{1}$$

где d — толщина образца, а ε_{∞} и ε_s — соответственно диэлектрические проницаемости при $f = \infty$ и f = 0 ($\varepsilon_{\infty} = \varepsilon'$ для частот, где нет дисперсии).

Как следует из табл. 2, при переходе из 0- в 1-состояние происходит уменьшение как ε' , так и ρ . Важно отметить, что в 1-состоянии $\varepsilon' = \varepsilon_{\perp}$. Для всех последующих переходов, вызванных воздействием уже постоянного электрического поля, ε' и ρ увеличиваются.

На рисунке показана кинетика $\rho(1)$ и $\varepsilon'(2)$ во время действия внешнего электрического поля и после его отключения (момент отключения показан вертикальной стрелкой). Из приведенных данных следует, что при действии поля ρ в максимуме увеличивается более чем на порядок, тогда как при отключении поля оно падает до стационарного значения, которое лишь в 2.3 раза больше ρ в *1*-состоянии. Для ε' необратимость действия электрического поля более выражена.

Увеличение ρ и ε' в 2- и 3-состояниях можно объяснить адсорбцией ионов на поверхности электрода. Из кинетики (см. рисунок) следует, что в процессе внешнего воздействия адсорбируется больше ионов, чем остается после релаксации в 3-состояние. Большое значение обратимой компоненты в кинетике ρ подтверждает предположение о том, что изменения ρ и ε' под действием различных внешних воздействий обусловлены именно процессами адсорбции и десорбции ионов.

Как следует из полученных данных, для всех состояний образца начальный участок низкочастотной дисперсии ε' и ε'' описывается

1* Письма в ЖТФ, 2000, том 26, вып. 19

Кинетика $\rho(1)$
и $\varepsilon'(2)$ при переходе из 1- в 2-состояние 5ЦБ толщиной 40
 $\mu{\rm m}.$ Температура 295 К.

уравнением Дебая

$$\varepsilon^* = \varepsilon_\infty + \frac{\varepsilon_s - \varepsilon_\infty}{1 + i\omega\tau},\tag{2}$$

где ε^* — комплексная диэлектрическая проницаемость, $\omega = 2\pi f$ — круговая частота, а τ — время диэлектрической релаксации. Отсюда следует очень важный вывод, что низкочастотная дисперсия ε' и ε'' , которая описывается уравнением Дебая, наблюдается не только при строго планарной, но и при "наклонной" ориентации молекул.

Из табл. 2 также следует, что τ пропорционально ρ . Значение *W* увеличивается с ростом ρ . Важно отметить, что увеличение *W* происходит за счет изменения ε_{∞} , т.е. усредненного по толщине образца значения диэлектрической проницаемости. Фактически же в выражение (1) должна входить диэлектрическая проницаемость вблизи поверхности образца. Ввиду сильно неоднородной структуры, особенно в 3-состоянии, диэлектрическая проницаемость вблизи электрода может существенно отличаться от ε_{∞} .

Работа выполнена при поддержке гранта STCU № 637.

Письма в ЖТФ, 2000, том 26, вып. 19

Список литературы

- [1] Ковальчук О.В. // УФЖ. 1996. Т. 41. № 10. С. 991–998.
- [2] Ковальчук О.В. // УФЖ. 1996. Т. 41. № 11-12. С. 1093-109.
- [3] Shuichi Murakami, Hironori Iga, Hiroyoshi Naito. // J. Appl. Phys. 1996. V. 80. N 11. P. 6496–6400.
- [4] Koval'chuk A.V. // J. Chem. Phys. 1998. V. 108. N 5. P. 8190-8194.
- [5] Ковальчук О.В. // УФЖ. 1999. Т. 44. № 11. С. 1376–1379.
- [6] Koval'chuk A.V. // Functional Materials. 1998. V. 5. N 3. P. 426-430.

Письма в ЖТФ, 2000, том 26, вып. 19