04;12

"Барьерный" режим функционирования электроразрядной галатеи ЭРЛ-М

© А.И. Морозов, А.И. Бугрова, А.С. Липатов, В.К. Харчевников, М.В. Козинцева

Московский институт радиотехники, электроники и автоматики РНЦ "Курчатовский институт"

Поступило в Редакцию 22 марта 2000 г.

Приведены результаты экспериментальных исследований параметров плазмы в ЭРЛ-М, работающей в "барьерном" режиме (с "мантией") при барьерном магнитном поле до 20 Ое. Обнаружен эффект насыщения локальных параметров плазмы в ловушке при увеличении тока эмиссии катода. Сделаны оценки энергетического времени жизни плазмы, а также коэффициента β .

Новый тип электроразрядных устройств, названных "мультипольными электроразрядными ловушками — галатеями (ЭРЛ-М)" был предложен А.И. Морозовым и А.И. Бугровой. Результаты первых экспериментов, выполненных на модели с квадрупольным полоидальным магнитным полем, созданным двумя кольцами с током одного направления, были изложены в [1]. Было отмечено, что существует две формы разряда, которые были названы разрядом с "плазмидой" и разрядом с "мантией". Параметры плазмы при прочих равных условиях были выше в режиме с плазмидой, и поэтому ему было уделено основное внимание как в [1], так и в последующих публикациях [2–4].

Позднее стало ясно, что основным фактором, определяющим характер плазменной конфигурации, является положение катода [5]. Если катод находится в окрестности нуля магнитного поля, то реализуется режим с "мантией". В этом случае плазма (точнее, электроны, электрическое поле которых удерживает ионы) в ловушке удерживается магнитным барьером (рис. 1, a). Если же катод углублен в магнитное поле, то реализуется режим с "плазмидой" (рис. 1, b). В этом случае в существенной степени электроны удерживаются магнитными пробками, и, только преодолев в этом режиме пробки, электроны попадают в область захвата, которую они затем так или иначе покидают.

88

Рис. 1. Траектории электронов в пробочном (*a*) и барьерном (*b*) режимах: *I* — сечение миксин (омываемых плазмой катушек), *2* — катод.

Представление о динамике электронов в обоих режимах дают изображенные на рис. 1, рассчитанные на ЭВМ траектории одиночных частиц.

В связи с описанной схемой поведения электронов режим, изображенный на рис. 1, *a*, был назван в [5] "барьерным" (Б-режим), а на рис. 1, *b* — "пробочным" (П-режим).

В данной статье представлены первые результаты исследований параметров в Б-режиме.

Эксперименты проводились на ЭРЛ-М "Авоська", описанной в [1], при расходе ксенона ($\dot{m} = 2 \text{ mg/s}$), при постоянной откачке и давлении в камере (по воздуху) $\sim (2-3) \cdot 10^{-4}$ Torr.

В точке с координатами $r_0 = 17$ cm, z = 0 магнитное поле обращалось в нуль, а максимум барьерного поля (при z = 0) находился при $r_1 = 21.7$ cm. Разряд возникал между накальным катодом, помещенным

в нуль поля и стенками вакуумной камеры. Газ подавался в окрестность катода. При отсутствии магнитного поля, но поданном напряжении, обычно U = 200 V, между катодом и трубкой напуска (под анодным потенциалом) зажигался "газоструйный разряд", ток в котором J_2 был близок к току эмиссии катода [6]. В дальнейшем калибровка величины тока эмиссии катода определялась по J_2 . Измерения проводились, как правило, при $J_2 = 200$ mA.

При включении магнитного поля вспыхивало голубое свечение, охватывающее целиком кольца, при этом ослабление свечения при удалении от катода вдоль азимута, визуально практически отсутствовало. Исследования велись в стационарном режиме при барьерном поле $H_1 = 20$ Ое. Такое поле удерживало только электроны, а ионы удерживались электрическим полем электронов. Выбор указанной величины поля определялся желанием избежать сильного нагрева катушек при стационарной работе.

А) Интегральные характеристики. В барьерном режиме ток разряда J_1 практически не зависит от H_1 и определяется в основном током эмиссии катода (т. е. J_2). При увеличении расхода от нуля до некоторого \dot{m}_* ток разряда также растет от 0 до $J_1 \sim J_2$.

Б) Изменение локальных параметров вдоль *r*. Измерения *n*, T_e и потенциала φ проводились зондами. В процессе измерений был обнаружен, в общем, естественный эффект насыщения величин n_e , T_e и φ при увеличении тока накала катода. В пробочном режиме это наблюдается при $J_2^* \approx 200$ mA, в барьерном — при $J_2^* \approx 300$ mA.

На рис. 2 изображены зависимости n(r), $T_e(r)$, $\varphi(r)$ при z = 0в пробочном (U = 200 V, $J_1 = 200$ mA, $\dot{m} \approx 2$ mg/s) и барьерном (U = 200 V, $J_1 = 300$ mA, $\dot{m} \approx 2$ mg/s) режимах.

Из рисунка видно (пунктирные кривые), что в пробочном режиме ($r \approx 13.5 \,\mathrm{cm}$) плазма концентрируется в узкой области $\sim 2-3 \,\mathrm{cm}$ по r. Ионы удерживаются в потенциальной яме глубиной $|\varphi_{\min}| \sim 70 \,\mathrm{V.B}$ центре ямы $T_e \sim 30 \,\mathrm{eV}, n \sim 5 \cdot 10^{10} \,\mathrm{cm^{-3}}$. В барьерном режиме ($r \approx 17.5 \,\mathrm{cm}$) плазма находится в более общирной области $\delta r \sim 15 \,\mathrm{cm}$, при этом глубина потенциальной ямы $\sim 40 \,\mathrm{V}, T_{e\,\max} \sim 15 \,\mathrm{eV}, n_{\max} \sim 8 \cdot 10^{10} \,\mathrm{cm^{-3}}$.

Распределение параметров плазмы по (r, z). В барьерном режиме при U = 200 V, $J_1 = 300$ mA, $\dot{m} \approx 2$ mg/s зондами были сняты распределения n(r, z), $T_e(r, z)$, $\varphi(r, z)$. С помощью этих данных были выделены области с примерно равными по величине параметрами (рис. 3). Видно, что максимальные параметры смещены относительно плоскости z = 0 и

Рис. 2. Распределение параметров вдоль r в центральной плоскости (z = 0): пунктир — пробочный режим, сплошные линии — барьерный режим.

достигают значений $T_{e \max} \sim 20 \text{ eV}, n_{\max} \sim 9 \cdot 10^{10} \text{ cm}^{-3}, |\varphi_{\min}|_{\max} = 50 \text{ V}.$ В то же время при z = 0 максимум указанных величин соответственно равен: $T_{e,0} = 15 \text{ eV}, n_{e,0} = 8 \cdot 10^{10} \text{ cm}^{-3}, |\varphi_{\min}|_0 = 40 \text{ V}.$

Это обстоятельство, а также неэквипотенциальность магнитных силовых линий указывают на отсутствие максвеллизации из-за относительно короткого времени жизни частиц в ловушке.

Рис. 3. Распределение параметров в плоскости (r, z) в барьерном режиме: $a - n_e, b - T_e, c - \varphi$: $a - I - 8.5 \cdot 10^{10} \text{ cm}^{-3} < n < 9 \cdot 10^{10} \text{ cm}^{-3}$, $II - 8 \cdot 10^{10} \text{ cm}^{-3} < n < 8.5 \cdot 10^{10} \text{ cm}^{-3}$, $III - 1 \cdot 10^{10} \text{ cm}^{-3} < n < 8 \cdot 10^{10} \text{ cm}^{-3}$; $b - I - 15 \text{ eV} < kT_e < 20 \text{ eV}$, $II - 5 \text{ eV} < kT_e < 15 \text{ eV}$, $III - kT_e < 5 \text{ eV}$; $c - I - 45 eV < |\varphi| < 50 \text{ eV}$, $II - 40 \text{ eV} < |\varphi| < 45 \text{ eV}$, $III - 10 eV < |\varphi| < 40 \text{ eV}$.

Оценки β и τ_E . а) Параметр β для "Авоськи" может быть оценен разными способами. Если говорить о максимальном локальном значении, то $(\beta_{loc})_{max} = \infty$. Более адекватным является "барьерное" β_0 , оцененное по формуле:

$$\beta_0 = \frac{8\pi nk(T_e + T_i)}{H_1^2}.$$
 (1)

Эффективная температура ионов может быть оценена по известным $\varphi(r)$ и n(r) с помощью "абелизации". При некоторых слабых допущениях можно принять $kT_i \approx \frac{1}{3}|\varphi_{\min}|$. Подставляя в (1) значения $T_e = 20$ eV, $n = 9 \cdot 10^{10}$ cm⁻³, $|\varphi_{\min}| = 50$ V, получим $\beta_0 \approx 0.3$.

б) Время удержания энергии τ_E оценивается по формуле:

$$\tau_E = \frac{\int \frac{3}{2} n\kappa (T_e + T_i) dV}{J_1 U}.$$
(2)

Используя данные рис. 3, получаем $\tau_E \approx 30 \, \mu s$.

Это значение τ_E близко к значению, рассчитанному по классическим формулам.

Авторы благодарят В.В. Савельева за выполненные на ЭВМ расчеты траекторий электронов.

Работа выполнена при поддержке Минатома.

Список литературы

- Бугрова А.И., Липатов А.С., Морозов А.И., Харчевников В.К. // Письма в ЖТФ. 1992. Т. 18. В. 8. С. 1–4.
- [2] Бугрова А.И., Липатов А.С., Морозов А.И., Харчевников В.К. // Письма в ЖТФ. 1992. Т. 18. В. 24. С. 54–57.
- [3] Бугрова А.И., Липатов А.С., Морозов А.И., Харчевников В.К. // Физика плазмы. 1993. Т. № 12. С. 1411–1417.
- [4] Морозов А.И., Савельев В.В. // УФН. 1998. № 11. Т. 168. С. 1153–1194.
- [5] Бишаев А.М., Бугрова А.И., Козинцева М.В. и др. // Тез. докл. XXVI Звенигородской конференции по физике плазмы и УТС. Звенигород, 1999. С. 82.
- [6] Бугрова А.И., Липатов А.С., Морозов А.И., Харчевников В.К. // Физика плазмы. 1991. Т. 18. В. 19. С. 29–31.