01;03 Автокорреляционная функция скорости наночастицы в молекулярной системе твердых сфер

© В.Я. Рудяк, Г.В. Харламов, А.А. Белкин

Новосибирский государственный архитектурно-строительный университет E-mail: rudyak@ngasu.nsk.su

Поступило в Редакцию 1 февраля 2000 г.

Методом молекулярной динамики изучается диффузия наночастиц в плотной молекулярной среде (жидкости или газе) твердых абсолютно упругих сфер в широком диапазоне плотностей несущей среды. Установлено, что релаксация автокорреляционной функции скорости частицы хорошо описывается суперпозицией двух экспоненциальных функций с разными временами релаксации. Изучены зависимости автокорреляционной функции скорости наночастицы от ее массы и радиуса, а также от плотности несущего газа.

Бурное развитие нанотехнологий давно поставило в повестку дня исследования диффузии наночастиц, размеры которых меняются от нескольких до сотен ангстрем. В литературе известны весьма разноречивые мнения относительно того, как следует описывать этот процесс. С одной стороны, встречаются утверждения, что диффузию наночастиц можно описывать так же, как и диффузию обычных броуновских частиц, с помощью коэффициента D_E Эйнштейна

$$D_E = kT/M\gamma_s, \qquad \gamma_s = 3\pi\eta\sigma_p/M,$$
 (1)

где η — вязкость среды, σ_p и M — диаметр и масса сферической броуновской частицы, T — температура среды.

С другой стороны, существуют попытки описать диффузию наночастиц с помощью кинетической теории газов. Для этого обычно

29

используют модифицированную теорию Энскога [1]

$$D_k = kT/M\gamma_k, \qquad \gamma_k = \frac{8n\sigma_0^2 g(\sigma_0)}{3} \sqrt{\frac{2\pi mkT}{M(M+m)}}, \tag{2}$$

где m — масса молекулы несущего газа, n — плотность газа, $\sigma_0 = (\sigma_p + \sigma)/2$, σ — диаметр молекул, g — парная конфигурационная функция распределения системы.

Строго говоря, нет никаких оснований диффузию наночастиц описывать ни тем, ни другим способом. Чтобы понять механизмы диффузии наночастиц, необходимо исследовать микроскопические процессы, происходящие в окрестности частицы. Коэффициент диффузии D связан с автокорреляционной функцией скорости (АКФС) $\chi_{\nu\nu}$ частицы соотношением

$$D = \frac{1}{3} \int_{0}^{\infty} \chi_{\nu\nu} dt.$$
 (3)

Поэтому, чтобы исследовать диффузию наночастицы, необходимо изучить эволюцию ее АКФС. Изучение АКФС наночастиц методом молекулярной динамики и является целью настоящей заметки. Рассматривается гетерогенная система твердых сфер, состоящая из наночастицы и молекулярного окружения. В расчетах отношение диаметров соответственно частиц и молекул изменяется от 1 до 4, а масс — от 1 до 1000. Плотность среды $\alpha = (V - V_p)/V_0$ ($V_0 = N\sigma^3/\sqrt{2}$, V_p — объем броуновской частицы) варьировалась в пределах от 2 до 75.3.

В расчетах использовался обычный алгоритм метода молекулярной динамики [2,3] с периодическими граничными условиями. Моделируемая ячейка представляла собой куб, содержащий одну наночастицу, и *N* молекул.

АКФС частицы вычислялась по формуле

$$\chi_{\nu\nu} = \langle \mathbf{v}_p(\mathbf{0}) \cdot \mathbf{v}_p t \rangle = \frac{1}{N_r} \sum_{i=0}^{N_r} \mathbf{v}_p(i\Delta t) \cdot \mathbf{v}_p(i\Delta t+t),$$

где \mathbf{v}_p — скорость броуновской частицы, а N_r — число реализаций. В наших расчетах $N_r\gtrsim 10^5$.

Результаты расчетов сравнивались с результатами теории Энскога (2) и Эйнштейна (1). Парная конфигурационная функция частицы и

Автокорреляционная функция скорости наночастицы в молекулярной системе твердых сфер.

молекулы вычислялась по формуле, полученной в работе [4]. Время релаксации во всех случаях определялось соотношением $\tau = 1/\gamma$, так что время релаксации, получающееся из гидродинамической теории, равно $\tau_E = 1/\gamma_s$, а время релаксации Энскога — $\tau_k = 1/\gamma_k$.

На рисунке, а представлены временные зависимости нормированной АКФС $\psi_{vv} = \chi_{vv}/\langle v_p^2 \rangle$ в логарифмическом масштабе для частиц с $\sigma_p = 4\sigma$ при $\alpha = 4.8$ и соотношении масс M/m = 10, 25, 50, 100, 150 (см. также табл. 1). Среднее время свободного пробега для такой системы $\tau = 0.071$. Во всех случаях можно выделить два качественно различных участка релаксации, соотношение между которыми меняется с изменением соотношения масс частицы и молекулы. Другой характерной особенностью представленных на этих рисунках кривых является

Продолжение рисунка.

прямолинейность второго долговременного участка релаксации АКФС. Поскольку эти кривые нарисованы в логарифмическом масштабе, то это указывает на то, что и второй этап релаксации АКФС наночастиц является экспоненциальным. Действительно, во всем диапазоне изменения отношения масс частицы и молекул эволюция автокорреляционной функции хорошо описывается суммой двух экспонент

$$\psi_{vv} = a_1 \exp(-t/\tau_1) + a_2 \exp(-t/\tau_2). \tag{4}$$

Параметры a_1, a_2, τ_1, τ_2 приведены в табл. 1. Там же приведены времена релаксации, рассчитанные по теории Энскога и теории Эйнштейна– Ланжевена. Во всех случаях коэффициент диффузии, определяемый формулой (1), равен 1.623.

M/m	a_1	$ au_1$	a_2	$ au_2$	D	$ au_k$	D_k	$ au_E$
1	0.985	0.0143	0.015	1.23	1.950	0.0147	1.103	0.0217
2	0.965	0.0241	0.035	0.69	1.769	0.0255	0.956	0.0433
3	0.93	0.0328	0.07	0.58	1.803	0.0361	0.901	0.065
5	0.87	0.0476	0.13	0.55	1.810	0.0570	0.855	0.108
10	0.79	0.087	0.21	0.69	1.616	0.109	0.818	0.217
25	0.55	0.169	0.45	0.98	1.534	0.266	0.796	0.541
50	0.38	0.263	0.62	1.59	1.495	0.526	0.788	1.08
75	0.19	0.222	0.81	1.786	1.336	0.786	0.786	1.624
100	0.14	0.200	0.86	2.169	1.299	1.047	0.784	2.166
150	0.09	0.200	0.91	3.03	1.211	1.569	0.783	3.249
1000	_	_	1.0	17.9	1.1	10.421	0.781	21.658

Таблица 1. Параметры АКФС и коэффициенты диффузии наночастицы в зависимости от *M/m*

Существование двух областей релаксации известно давно и для гомогенной системы твердых сфер [5], и для уединенной броуновской частицы [6]. Наличие второй области релаксации обычно связывается с длинноволновыми гидродинамическими "хвостами" возмущений, обусловленными коллективным коррелированным движением молекул. Согласно гидродинамической теории [7], асимптотика АКФС на больших временах должна подчиняться закону трех вторых $\chi_{vv}(t) \sim t^{-3/2}$. Это положение давно устоялось и является общепринятым. Подчеркнем, однако, что численным экспериментом оно подтверждено достаточно надежно лишь для однородной молекулярной системы (см. работу [3] и цитируемую там литературу). Для гетерогенной системы нам известна лишь одна работа [6], где подобное утверждение также делается. Расчеты, выполненные нами в [3], свидетельствуют, однако, о том, что данные работы [6] получены с большими погрешностями и не позволяют делать однозначный вывод о характере релаксации "хвостов" АКФС.

Результаты расчетов релаксации АКФС, приведенные на рисунке, *a*, показывают, что по крайней мере при больших значениях параметра M/m степенного убывания этих функций не наблюдается. Об этом же свидетельствует и рисунок, *b*, где представлено поведение функций $\psi_{\nu\nu}^{-2/3}$ во времени при различных соотношениях масс частицы и молекул несущей среды, M/m = 10, 25, 50, 100, 150. Нелинейный характер

Таблица 2. Параметры АКФС и коэффициенты диффузии наночастицы в зависимости от α ($\sigma_p = 4\sigma_0$ и M = 25 m)

α	λ	a_1	$ au_1$	a_2	$ au_2$	D	$ au_E$	D_E	$ au_h$	D_h
2	0.23	0.71	0.037	0.29	0.324	0.360	0.039	0.117	0.0736	0.221
75.3	24.0	0.98	7.726	0.02	2.523	22.83	7.246	21.73	0.860	2.580

кривых на этом рисунке говорит о том, что начиная со значений параметра M/m = 10 АКФС не имеют областей релаксации, описываемых степенным законом.

Зависимость АКФС наночастицы от плотности среды изучалась на примере системы, содержащей одну частицу массой M = 25m и диаметром, равным $\sigma_p = 4\sigma_0$, и 1712 молекул. При этом плотность среды принимала значения $\alpha = 2$, 4.8, 22.3, 75.3. При высоких плотностях системы АКФС наночастицы описывается суперпозицией двух экспонент, первая из которых имеет время релаксации, близкое к времени релаксации Энскога. Однако вклад длинноволновых релаксационных процессов оказывается значительным ($a_2 = 0.29$, см. табл. 2, здесь λ — средняя длина свободного пробега молекулы, полученная в расчетах; она измеряется в радиусах молекул). При уменьшении плотности несущей среды до $\alpha = 75.3$ АКФС наночастицы с точностью порядка 1–2% описывается уже одной экспонентой. Время релаксации резко возрастает (более чем в 200 раз) и равно $\tau = 7.726$. Оно с точностью около 5% совпадает с энскоговским.

Как представляется, установленная в расчетах двухэкспоненциальная структура релаксации АКФС наночастицы связана с двумя механизмами ее релаксации. Во-первых, имеет место вклад, обусловленный взаимодействием наночастиц с молекулами, и эти взаимодействия практически всегда многочастичные. Этот механизм будет тем эффективнее, чем меньше размеры частиц. Начиная с некоторого критического порога диффузия наночастиц будет осуществляться преимущественно за счет взаимодействия наночастицы с микрофлуктуациями гидродинамических полей несущей среды. В настоящей работе мы не исследуем диффузию в турбулентной среде, поэтому речь идет о флуктуациях, которые имеют место в жидкости и в газе в равновесных состояниях. Тривиальным примером такого сорта является флуктуация плотности, возникающая при

соударении двух или нескольких молекул. В случае, если флуктуация имеет характерные размеры $l_f \ll \sigma_p$, ее влияние на эволюцию частицы будет мало заметным. По сути оно будет сводиться лишь к небольшому изменению частоты столкновений молекул с частицей. Заметным это влияние может стать лишь в том случае, когда характерный размер флуктуации l_f будет по крайней мере порядка размера самой частицы. Наночастицы имеют, как правило, размеры порядка гидродинамического физически бесконечно малого для несущей среды масштаба r_h . Поэтому $l_f \gtrsim r_h$. Последний масштаб меняется от значений порядка $r_h \sim \sqrt{\sigma L}$ в жидкости до $r_h \sim \sqrt{\lambda L}$ в разреженном газе [8]. Соответствующее время релаксации τ_f должно быть порядка времени "взаимодействия" дисперсной частицы с флуктуацией, которое в свою очередь определяется соотношением

$$\tau_f \sim l_f / v_p \sim \sqrt{\sigma L} / v_p \sim \sqrt{\sigma L} / c \sqrt{m/M}, \tag{5}$$

35

где *с* — тепловая скорость молекул несущей среды.

Отношение времени релаксации Энскога к этому времени порядка

$$rac{ au_k}{ au_f} \sim rac{c\sqrt{m/M}}{cn\sigma_p^2(m/M)\sqrt{\sigma L}} \sim rac{1}{\epsilon} \left(rac{\sigma}{\sigma_p}
ight)^2 \sqrt{rac{\sigma M}{Lm}},$$

где ϵ — параметр Ван-дер-Ваальса несущего газа. Нетрудно проверить, что при $\alpha = 4.8$ и M = 100 m времена τ_f и τ_E разнятся примерно на порядок, что соответствует значениям, наблюдавшимся в расчетах (табл. 1). Таким образом, установленная в расчетах форма АКФС наночастицы (4) представляется вполне разумной.

Существование микофлуктуаций является со статистической точки зрения тем более вероятным, чем меньше ее масштаб. Микрофлуктуации с масштабами порядка $l_f \gtrsim r_h$ являются типичными. Более того, как показано в работе одного из авторов (В.Я. Рудяка) [8], последовательное определение гидродинамических переменных и формулирование соответствующих уравнений переноса с неизбежностью приводит к уравнениям гидродинамики, которые такие флуктуации содержат.

Работа выполнена при финансовой поддержке Российского фонда фундаментальынх исследований (проекты 98–01–00719, 96–15–96310).

Список литературы

- [1] Ферцигер Дж., Капер Г. Математическая теория процессов переноса в газах. М.: Мир, 1976. 554 с.
- [2] Рудяк В.Я., Харламов Г.В., Белкин А.А. Прямое численное моделирование процессов переноса в гетерогенных средах. І. Коэффициент диффузии броуновской частицы. Препринт НГАСУ № 2 (12)-98. Новосибирск, 1998. 38 с.
- [3] Рудяк В.Я., Харламов Г.В., Белкин А.А. Прямое численное моделирование процессов переноса в гетерогенных средах. І. Диффузия наночастиц и макромолекул в плотных газах и жидкостях. Препринт НГАСУ № 1 (13)-2000. Новосибирск, 2000. 39 с.
- [4] Mansoori G.A., Carnahan N.F., Starling K.E., Leland T.W. // J. Chem. Phys. 1971. V. 54. N 4. P. 1523–1525.
- [5] Alder B.J., Wainwright T.E. // Phys. Rev. 1970. V. 1 A. N 1. P. 18-21.
- [6] Subramanian G., Lewitt D., Davis H. // J. Chem. Phys. 1974. V. 60. N 2. P. 591–594.
- [7] Zwanzig R., Bixon M. // Phys. Rev. 1970. V. 2 A. N 5. P. 2005-2012.
- [8] Рудяк В.Я. // ЖТФ. 1995. Т. 65. № 11. С. 29-40.