05;07;12

Пропускание света дисперсными системами нематик/полимер NCAP-типа

© О.А. Афонин, В.Ф. Названов

Саратовский государственный университет

Поступило в Редакцию 9 сентября 1999 г.

Теоретически исследован стационарный эффект индуцируемого электрическим полем изменения прозрачности тонкопленочных дисперсных систем нематический жидкий кристалл/полимер NCAP-типа, образованных сплюснутыми сфероидальными каплями нематика с биполярной структурой. В рамках предложенной феноменологической модели, основанной на приближениях однократного рассеяния и аномальной дифракции, описано характерное для систем данного типа немонотонное поведение зависимости коэффициента оптического пропускания от величины приложенного поля при падении света вдоль нормали к слою. Экспериментальная проверка модели выполнена для дисперсных систем с матрицей из поливинилового спирта, получено хорошее согласие теоретических результатов с экспериментальными.

Одним из актуальных направлений оптики жидких кристаллов является исследование эффектов управляемых электрическим полем ослабления и рассеяния света в дисперсных системах, представляющих собой взвеси капель нематических жидких кристаллов (НЖК) в полимерных матрицах [1,2]. Характерной особенностью электрооптического отклика тонкопленочных дисперсных систем НЖК/полимер так называемого NCAP-типа (Nematic Curvilinear Aligned Phase) [2], образованных сплюснутыми вдоль нормали к пленке $\hat{\mathbf{m}}$ каплями нематика с биполярной структурой, в условиях, когда НЖК имеет положительную анизотропию диэлектрической проницаемости $\Delta \varepsilon > 0$, а электрическое

1

поле Е направлено параллельно $\hat{\mathbf{m}}$, является наличие ярко выраженного минимума, а иногда и осцилляций, полевой зависимости коэффициента оптического пропускания T(E) [3–7]. Этот факт может быть использован для значительного увеличения контрастного отношения проекционных устройств отображения информации на основе ЖК-дисперсий.

Установленный ранее в результате экспериментальных исследований [2,3,5,8,9] сценарий процесса полевой ориентации биполярных капель НЖК, имеющих форму сплюснутых сфероидов с полуосями (а, $a, b \leq a$), схематически показан на рис. 1, a. Он содержит три основные стадии: I) вырожденную по азимуту ориентацию директоров капель Ñ в плоскости пленки в области малых значений напряженности поля 0 < *E* < *E*_{c1}; II) пороговую переориентацию локального директора НЖК $\hat{\mathbf{n}}(\mathbf{r})$ в центральной части капель при достижении некоторого критического значения $E_{c1}(b)$ с сохранением фиксированного начального положения полюсов биполярных структур; III) ориентационный переход $\hat{\mathbf{N}} \perp \mathbf{E} \rightarrow \hat{\mathbf{N}} \parallel \mathbf{E}$ при напряженности поля $E_{c2}(b) \ge E_{c1}$ и последующее плавное увеличение степени ориентационной упорядоченности $\hat{\mathbf{n}}(\mathbf{r})$ вдоль Е. В случае сильного азимутального поверхностного сцепления молекул НЖК и полимера и/или значительной анизометрии полимерных капсул возможна также ситуация, когда $E_{c2} \rightarrow \infty$, т.е. процесс ориентации ограничен стадиями I и II [5,10].

В настоящей работе впервые выполнен приближенный теоретический анализ указанных электрооптических явлений для случая, когда волновой вектор падающего света \mathbf{k}_0 параллелен направлению ориентирующего поля **E**, и проведено сопоставление полученных теоретических результатов с экспериментальными данными в продолжение работ [11,12].

В пренебрежении эффектами многократного рассеяния света [13,14] коэффициент пропускания (прозрачность) дисперсной системы НЖК/полимер для неполяризованного или линейно поляризованного излучения, падающего вдоль нормали к слою ($\mathbf{k}_0 \parallel \mathbf{E}$), определяется законом Бугера $T = T_0 \exp(-\tau)$, где τ — оптическая толщина дисперсной среды, а коэффициент T_0 учитывает френелевское отражение на плоских границах раздела и поглощение в прозрачных электродах электрооптической ячейки. Выражение для τ , соответствующее представленному на рис. 1, *а* сценарию полевой ориентации биполярных

капель НЖК, имеет вид [11,12]

$$\tau = \frac{3C_V d}{4\langle b^3 \rangle} \left\{ \frac{1}{2} \int_{0}^{b_c^-(E)} b^2 \left[Q_1(E, \vartheta_N = \pi/2) + Q_2(E, \vartheta_N = \pi/2) \right] h(b) db + (1 - C_V) \int_{b_c^+(E)}^{\infty} b^2 Q_{1\equiv 2}(E, \vartheta_N = 0) h(b) db \right\},$$
(1)

где $0 < C_V < 1$ — объемная доля капель; d — геометрическая толщина слоя; $Q_1(E, \vartheta_N)$ и $Q_2(E, \vartheta_N)$ — факторы эффективности ослабления отдельной капли для компонент падающего света, поляризованных параллельно (1) и перпендикулярно (2) плоскости (\mathbf{k}_0 , $\hat{\mathbf{N}}$); h(b) функция распределения капель по размерам; $b_c(E)$ — размер капель, при котором поле напряженностью E вызывает пороговую переориентацию $\hat{\mathbf{N}} \perp \mathbf{E} \rightarrow \hat{\mathbf{N}} \parallel \mathbf{E}$. Коэффициент $1 - C_V$ во втором слагаемом выражения (1) учитывает поправку на эффект "просветления" дисперсной среды в области значений $C_V \rightarrow 1$ [15,16].

Рассмотрим сначала полевую зависимость факторов эффективности ослабления $Q_1(E, \vartheta_N = \pi/2)$ и $Q_2(E, \vartheta_N = \pi/2)$, описывающих капли с ориентацией $\hat{\mathbf{N}} \perp \mathbf{E}$ в области $0 < E < E_{c2}$ (состояния I и II на рис. 1, *a*). Точный расчет векторого поля локального директора НЖК в капле $\hat{\mathbf{n}}(E, \mathbf{r})$ и соответствующих ему функций $Q_1(E)$ и $Q_2(E)$ является весьма сложной физической задачей. Приближенное решение проблемы может быть реализовано при использовании представления о среднем по объему капли V направлении ориентации молекул НЖК $\overline{\mathbf{n}}(E) = \langle \hat{\mathbf{n}}(E, \mathbf{r}) \rangle_V$, что позволяет использовать в качестве оптической модели капли однородный одноосный анизотропный сфероид с ориентацией оптической оси параллельно $\overline{\mathbf{n}}(E)$. Вектор $\hat{\mathbf{N}}$ в данном случае не колинеарен направлению средней ориентации $\overline{\mathbf{n}}(E)$ (рис. 1, *a* — II). Соответствующие такой модели факторы эффективности ослабления Q_1 и Q_2 для света с длиной волны λ определяются в приближении аномальной дифракции известной формулой [17,18]:

где

$$Q_i = 2 - 4\rho_i^{-1} \sin \rho_i + 4\rho_i^{-2}(1 - \cos \rho_i), \quad i = 1, 2,$$
(2)

$$\begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix} = 4\pi \lambda^{-1} b \left[\left\{ \begin{array}{c} n_e^*(\overline{\vartheta}) \\ n_o \end{array} \right\} - n_p \right],$$
 (3)

$$n_e^*(\overline{\vartheta}) = \frac{n_o n_e}{[n_o^2 + (n_e^2 - n_o^2)\cos^2\overline{\vartheta}]^{1/2}},\tag{4}$$

 $\cos \overline{\vartheta} = \overline{\mathbf{n}} \cdot \mathbf{E}/E$; n_o и n_e — показатели преломления НЖК для обыкновенного и необыкновенного лучей соответственно; n_p — показатель преломления полимерной матрицы.

Рис. 1. *а* — схематическое представление структурных изменений в биполярной капле НЖК сплюснутой сфероидальной формы во внешнем электрическом поле Е. Показаны сечения плоскостью (\hat{N} , E). Вектор \hat{N} (директор капли) указывает направление прямой, соединяющей точечные дефекты нематика на поверхности полимерной капсулы. Пояснения остальных обозначений даны в тексте, *b* — зависимости среднего угла ориентации молекул НЖК в капле $\overline{\vartheta}$ и угла ориентации ϑ_N директора капли \hat{N} от приведенного поля \overline{e} .

Функцию $\overline{\vartheta}(E)$ можно получить в результате решения уравнения баланса упругого Γ_K и диэлектрического Γ_E моментов кручения, действующих на жидкий кристалл в объеме капли: $\Gamma_K + \Gamma_E = 0$. Мы использовали простейшую тангенциальную форму упругого момента [19] $\Gamma_K \approx -\frac{4}{3}\pi A^2 R K tg(\vartheta_N - \overline{\vartheta})$, а диэлектрический момент определили в виде $\Gamma_E \approx \frac{2}{3}\pi R^3 g^2 \varepsilon_0(\varepsilon_{\parallel} - \varepsilon_{\perp})E^2 \sin 2\overline{\vartheta}$, где A — некоторая константа порядка единицы; $R = l^{2/3}b$ — радиус сферы эквивалентного объема (l = a/b); K — средний модуль упругости НЖК; $g = 3\varepsilon_p/(2\varepsilon_p + \overline{\varepsilon}_{LC});$ $\overline{\varepsilon}_{LC} = (\varepsilon_{\parallel} + 2\varepsilon_{\perp})/3; \varepsilon_{\parallel}, \varepsilon_{\perp}$ и ε_p — главные диэлектрические проницаемости НЖК и диэлектрическая проницаемость полимера соответственно. В этом случае статическое уравнение для $\overline{\vartheta}$ можно представить в форме $tg(\vartheta_N - \overline{\vartheta}) - \frac{1}{2}\overline{e}^2 \sin 2\overline{\vartheta} = 0$, где $\overline{e} = gERA^{-1}[\varepsilon_0(\varepsilon_{\parallel} - \varepsilon_{\perp})K^{-1}]^{1/2}$ приведенное поле, связанное с процессом ориентации $\overline{\mathbf{n}}$. Интересующее нас решение этого уравнения при $\vartheta_N = \pi/2$ удобно записать в виде

$$\cos^2 \overline{\vartheta} = (\overline{e}^2 - 1)/\overline{e}^2, \qquad \overline{e} \ge 1.$$
(5)

Графики зависимостей $\overline{\vartheta}(\overline{e}, \vartheta_N = \pi/2)$ и $\vartheta_N(\overline{e})$ представлены на рис. 1, *b*. Из них следует, что изменение структуры отдельной биполярной капли НЖК начинается при $\overline{e} = 1$ ($E = E_{c1}$), затем происходит плавное уменьшение угла $\overline{\vartheta}$, вызывая в соответствии с (3) и (4) уменьшение фазовой задержки необыкновенного луча в капле, и при достижении некоторого значения $\overline{e} = \overline{e}_c$ ($E = E_{c2}$) имеет место пороговый ориентационный переход $\hat{\mathbf{N}} \perp \mathbf{E} \rightarrow \hat{\mathbf{N}} \parallel \mathbf{E}$. Согласно результатам работы [10], \overline{e}_c определяется выражением $\overline{e}_c = [5.7(l^2 - 1)l^{-2} + 2.1W_aRK^{-1}]^{1/2}$, где W_a — коэффициент азимутального поверхностного сцепления молекул НЖК и полимера. Соответствующее значение $b_c(E)$ в выражении (1) является решением уравнения

$$E = \frac{A}{gbl^{2/3}} \left[\frac{5.7K(l^2 - 1)l^{-2} + 2.1W_a bl^{2/3}}{\varepsilon_0(\varepsilon_{\parallel} - \varepsilon_{\perp})} \right]^{1/2}.$$
 (6)

Для описания ориентированного состояния биполярной капли НЖК $(\hat{\mathbf{N}} \parallel \mathbf{E})$ мы использовали разработанную ранее [11] структурную модель, представленную на рис. 1, *a* — III. Предполагается, что капля состоит из центральной части с однородной одноосной ориентацией локального директора $\hat{\mathbf{n}}$ вдоль $\hat{\mathbf{N}}$, индуцируемой приложенным полем **E**, и внешней части с неискаженной биполярной ориентацией $\hat{\mathbf{n}}(\mathbf{r})$, сохраняющейся

за счет сильного тангенциального поверхностного сцепления молекул НЖК и полимера. Граница между этими областями определяется вписанным в каплю сплюснутым сфероидом с полуосями

$$a_1 = a, \qquad b_1 = b\overline{e}/(\overline{e}+1).$$
 (7)

Таким образом, при $\overline{e} = 0$ капля характеризуется биполярной структурой $\hat{\mathbf{n}}(\mathbf{r})$, а при $\overline{e} \to \infty$ представляет собой однородно-одноосную анизотропную частицу с ориентацией $\hat{\mathbf{n}} \parallel \mathbf{E}$. Соответствующий фактор эффективности ослабления $Q_{1\equiv 2}(\vartheta_N = 0)$ рассчитывается в приближении аномальной дифракции с помощью выражений (10) и (12)–(16) из работы [11], модифицированных с учетом сплюснутой формы капель.

Экспериментальная проверка описанной модели эффекта изменения прозрачности была проведена для дисперсных систем НЖК/полимер, изготовленных методом эмульгирования промышленной смеси цианобифенилов СЖК-(1–4) в 10%-м водном растворе поливинилового спирта (ПВС). После удаления воды образовывалась взвесь биполярных капель НЖК в тонкой пленке ПВС. Функция распределения капель по размерам h(b) имела максимум при $b_m \approx 0.5 \,\mu\text{m}$ и хорошо описывалась обобщенным гамма-распределением [20]

$$h(b) = \frac{\eta \cdot (\mu/\eta)^{(\mu+1)/\eta}}{\Gamma[(\mu+1)/\eta]} \left(\frac{b}{b_m}\right)^{\mu} \frac{1}{b_m} \exp\left[-\frac{\mu}{\eta} \left(\frac{b}{b_m}\right)^{\eta}\right]$$
(8)

с параметрами $\mu = 4$ и $\eta = 0.515$. Готовая пленка помещалась между двумя стеклянными пластинами, на внутренние поверхности которых были нанесены прозрачные электроды (ITO). Толщина пленки d для различных образцов изменялась в пределах от 15 до 65 μ m, а объемная концентрация капель C_V — от 0.15 до 0.45. Изменение прозрачности ячеек достигалось приложением синусоидального электрического поля частотой 1 kHz и напряженностью до $10 \text{ V} \cdot \mu \text{m}^{-1}$. Измерения коэффициента пропускания T проводились с помощью He–Ne лазера ($\lambda = 633 \text{ nm}$) при температуре 25°C, угол приема детектора составлял 20'.

На рис. 2, *а* показана полевая зависимость приведенной оптической толщины $\tau(E)/C_V d$ (где $\tau = -\ln(T/T_0)$), полученная усреднением экспериментальных данных для серии образцов с различными значениями C_V и d. При этом значения концентрационного параметра $C_V d$ соответствовали линейному участку зависимости $\tau(C_V d, E = 0)$,

Рис. 2. a — зависимость приведенной оптической толщины $\tau/C_V d$ тонкопленочной дисперсной системы СЖК-(1–4)/ПВС от среднеквадратичной напряженности приложенного синусоидального электрического поля E частотой 1 kHz при падении света с длиной волны $\lambda = 633$ nm вдоль нормали к пленке. Точки — экспериментальные данные; кривые — результаты теоретического расчета (значения параметров системы указаны в тексте; пунктирная кривая соответствует условию $\overline{e}_c \to \infty$). На вставке представлена экспериментальная зависимость $\tau(C_V d)$ при E = 0, b — теоретические зависимости оптической толщины $\tau/C_V d$ и среднего фактора эффективности ослабления $\langle Q(\vartheta_N = \pi/2) \rangle$ от напряженности поля E и среднего размера капель b_{32} .

изображенной на вставке к рисунку. Теоретический расчет $\tau(E)/C_V d$, представленный на рис. 2, *a* сплошной кривой, был выполнен при следующем наборе параметров системы, соответствующем эксперименту: $n_0 = 1.52$, $n_e = 1.72$, $n_p = 1.51$, $\lambda = 633$ nm, l = 1.5, $b_m = 0.5$, $\mu = 4$, $\eta = 0.515$, $K = 10^{-11}$ H, $W_a = 10^{-5}$ N · m⁻¹, $\varepsilon_{\perp} = 5$, $\varepsilon_{\parallel} = 19$, $\varepsilon_p = 8$. Значение подгоночного параметра составляло A = 0.5. Пунктирная кривая получена при условии $\overline{e}_c \to \infty$ (или $b_c(E) \to \infty$),

отвечающем случаю жесткой фиксации полюсов биполярных структур в каплях, наблюдавшемуся в работе [5].

На рис. 2, *b* приведены результаты расчета зависимостей оптической толщины $\tau(E)/C_V d$ системы СЖК- $(1-4)/\Pi BC$, а также среднего фактора эффективности ослабления $\langle Q(\vartheta_N = \pi/2) \rangle = \frac{1}{2} \times \times [Q_1(\vartheta_N = \pi/2) + Q_2(\vartheta_N = \pi/2)]$ для группы капель, находящихся в ориентационных состояниях I и II (рис. 1, *a*), от напряженности поля *E* и среднего размера капель $b_{32} = \langle b^3 \rangle / \langle b^2 \rangle$. Можно легко видеть, что немонотонное поведение $\tau(E)$ характерно для крупных капель и связано с особенностями поведения функции $\langle Q(E, b_{32}) \rangle$. С уменьшением b_{32} немонотонность $\tau(E)$ исчезает и соответствующая кривая T(E) принимает *S*-образную форму. Расчеты показывают, что значение параметра $\nu = b_{32}(n_e - n_p)\lambda^{-1}$, определяющее границу между областями монотонного и немонотонного поведения $\tau(E)$ и T(E), составляет $\nu \approx 0.2$.

Таким образом, хорошее соответствие представленных теоретических результатов эксперментальным свидетельствует об адекватности предложенной нами модели для описания эффекта электрически управляемого изменения прозрачности жидкокристаллических дисперсных систем NCAP-типа.

Список литературы

- [1] Жаркова Г.М., Сонин А.С. Жидкокристаллические композиты. Новосибирск: Наука, 1994. 216 с.
- [2] Drzaic P.S. Liquid crystall dispersions. Singapore: World Scientific, 1995. 428 p.
- [3] Drzaic P.S. // Liq. Cryst. 1988. V. 3. N 11. P. 1543–1559.
- [4] Казначеев А.В., Носов Г.Б., Сонин А.С. // Опт. журн. 1993. № 7. С. 29–32.
- [5] Зырянов В.Я., Пресняков В.В., Шабанов В.Ф. // Письма в ЖТФ. 1996. Т. 22.
 В. 14. С. 22–26.
- [6] Aphonin O.A., Nazvanov V.F. // Mol. Cryst. Liq. Cryst. 1997. V. 303. P. 29-36.
- [7] Афонин О.А. // Проблемы оптической физики: материалы молодежн. научн. школы по оптике, лазерной физике и оптоэлектронике. Саратов: Изд-во СГУ, 1997. С. 178–180.
- [8] Ковальчук А.В., Курик М.В., Лаврентович О.Д., Серган В.В. // ЖЭТФ. 1988. Т. 94. № 5. С. 350–364.
- [9] Jain S.C., Rout D.K. // J. Appl. Phys. 1991. V. 70. N 11. P. 6988-6992.
- [10] Афонин О.А., Названов В.Ф. // Письма в ЖТФ. 1998. Т. 24. В. 11. С. 87-94.
- [11] Афонин О.А., Названов В.Ф. // ЖТФ. 1990. Т. 60. № 10. С. 93–99.

- [12] Aphonin O.A., Nazvanov V.F. // Liq. Cryst. 1997. V. 23. N 6. P. 845-859.
- [13] Иванов А.П., Лойко В.А., Дик В.П. Распространение света в плотноупакованных дисперсных средах. Минск: Наука и техника, 1988. 190 с.
- [14] Neijzed J.H.M., Boots H.M.J., Paulissen F.A.M.A., van der Mark M.B., Cornellissen H.J. // Liq. Cryst. 1997. V. 22. N 3. P. 255–264.
- [15] Twersky V. // J. Opt. Soc. Am. 1962. V. 52. N 2. P. 145–171.
- [16] Drzaic P.S. // Mol. Cryst. Liq. Cryst. 1995. V. 261. P. 383-392.
- [17] Ван де Хюлст Г. Рассеяние света малыми частицами. М.: ИИЛ, 1961. 536 с.
- [18] Zumer S. // Phys. Rev. A. 1988. V. 37. N 10. P. 4006-4015.
- [19] *Рахманов А.Н., Шмальгаузен В.И. //* Квант. электрон. 1994. Т. 21. N 9. С. 878–882.
- [20] Шифрин К.С. Введение в оптику океана. Л.: Гидрометеоиздат, 1983. 300 с.