Влияние решеточных вакансий на зонную структуру тройного оксида Ag₅Pb₂O₆

© И.Р. Шеин, А.Л. Ивановский

Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: shein@ihim.uran.ru

(Поступила в Редакцию в окончательном виде 22 сентября 2004 г.)

На основе самосогласованных полипотенциальных ЛМТО-расчетов обсуждается влияние структурных вакансий в подрешетке серебра на зонную структуру и природу межатомных взаимодействий в тройном оксиде Ag₅Pb₂O₆.

Работа выполнена в рамках Программы поддержки ведущих научных школ Российской Федерации (гранты HIII 829.2003.3 и HIII 1046.2003.3).

Изучая проводящие свойства поликристаллических керамик Ад-Рb-С-О, авторы [1] высказали предположение о возможности обнаружения в этой системе нового высокотемпературного сверхпроводника. Более детальные исследования показали, что электрофизические характеристики образцов [1] в основном определяются тройным оксидом Ag₅Pb₂O₆ — фазой Бистрема-Эверса [2]. Особенностью данного оксида являются широкие области гомогенности для Ад- и О-подрешеток: номинальные составы синтезированных образцов [3] соответствовали соединениям Ag_{5-x}Pb₂O_{6-v} (где 0.25 < x < 0.5; $y \sim 0.13$), которые (при 10-400 K) имеют металлический тип проводимости, отрицательные коэффициенты Зеебека и обнаруживают слабый диамагнетизм. Недавно появилось сообщение [4] об обнаружении "колоссальной" (анизотропной) электропроводности (> $10^9 \,\Omega^{-1} \cdot cm^{-1}$) в интервале температур 210-525 К для отожженных образцов оксида. Этот эффект связывают с образованием упорядоченных (вдоль оси с) "каналов" Ад-вакансий.

Качественная трактовка электрофизических свойств $Ag_5Pb_2O_6$ основана на полуэмпирическом расчете [5], согласно которому уровень Ферми E_F совпадает с локальным пиком плотности *s*-состояний серебра, причем основное участие в эффектах проводимости принимают делокализованные состояния Ag, формирующие в структуре оксида как цепи, так и слои (см. далее). Предполагается также, что электронное допирование оксида может обусловить его переход в полупроводниковое состояние.

В настоящей работе сообщаются результаты *ab initio* расчета зонной структуры тройного оксида $Ag_5Pb_2O_6$ и обсуждается возможное влияние на его электронные свойства вакансий в Ag-подрешетке.

Структура $Ag_5Pb_2O_6$ (пр.гр. P-31m, параметры решетки a = 0.5932 nm и c = 0.6411 nm [6]) состоит из чередующихся сеток атомов серебра (Ag^2) — так называемых 3636-сеток Кагомэ — и молекулярных слоев, составленных тригональными призмами PbO₆ и цепочечными мотивами атомов серебра (Ag^1) . Атомы Ag^2 двукратно, а Ag^1 трехкратно координированы атомами кислорода (рис. 1). Оксид моделировался 13-атомной ячейкой $[Ag_2^1(Ag_3^2Pb_2O_6)]$. Дефектный (по Ag-подрешетке) оксид формального состава $Ag_4Pb_2O_6$ описывался ячейкой $[Ag^1\square(Ag_3^2Pb_2O_6)]$, где \square — вакансия в позиции Ag^1 . Расчеты проведены скалярно-релятивистским полнопотенциальным методом ЛМТО [7] в рамках обобщенной градиентной аппроксимации обменно-корреляционных эффектов [8].

Рис. 1. Кристаллическая структура $Ag_5Pb_2O_6$ [4]. Указаны неэквивалентные позиции атомов серебра Ag^1 и Ag^2 .

Рис. 2. Энергетические зоны тройного оксида Ag₅Pb₂O₆.

Рис. 3. Полная и парциальные плотности электронных состояний комплектного $Ag_5Pb_2O_6(a)$ и содержащего 50% Ag^1 -вакансий оксида $Ag_{5-x}Pb_2O_6(b)$. Штриховыми линиями на верхней части показано число электронов *n* в ячейке.

На рис. 2, 3 приводятся дисперсионная зависимость E(k), полные и парциальные плотности состояний (ПС) комплектного (Ag₅Pb₂O₆) и дефектного (Ag₄Pb₂O₆) оксидов. Валентная полоса Ag₅Pb₂O₆ общей шириной 9.42 eV (без учета низкоэнергетических квазиостовных 2*s*-зон кислорода, расположенных на ~15 eV ниже E_F) состоит из двух групп энергетических зон, расположенных в интервалах -(9.6-8.0) и -(6.7-1.0) eV, которые разделены непрямой (переход A-M) щелью ~ 1.3 eV. Нижняя группа включает две зоны O2*p*-Pb6*s*-состояний,

верхняя содержит плотную группу зон смешанного Ag4d-O2p-Pb5d, 6p-типа. Прифермиевские зоны антисвязывающих O2p-Pb6s-состояний имеют значительную дисперсию E(k), образуя "плато" ПС. Вклад в эти зоны *s*-состояний серебра, которым приписана [5] основная роль в эффектах проводимости, пренебрежимо мал: согласно нашим расчетам, занятые Ag5s-состояния в основном примешиваются к группе зон Ag4d-O2p-Pb5d, 6p (рис. 2, 3). Общая ПС на уровне Ферми ($N(E_{\rm F}) = 1.298$ state/eV · form.units) на ~ 70% определена O2p, Pb6s-состояниями (см. таблицу).

Полная и парциальные плотности состояний (state/eV \cdot form.units) на уровне Ферми $N(E_{\rm F})$ и на пиках A и B для комплектного и дефектного по Ag-подрешетке оксидов Ag₅Pb₂O₆

Оксид	Область спектра*	Полная ПС	Парциальные ПС							
			$\begin{array}{c} Ag^1 5s \\ Ag^2 5s \end{array}$	$\begin{array}{c} \mathrm{Ag}^{1}5p\\ \mathrm{Ag}^{2}5p\end{array}$	$\begin{array}{c} \mathrm{Ag}^{1}\mathrm{4}d\\ \mathrm{Ag}^{2}\mathrm{4}d\end{array}$	Pb6s	Pb6p	Pb5d	O2s	O2 <i>p</i>
Ag ₅ Pb ₂ O ₆	$N(E_{ m F})$	1.298	0.040	0.023	0.078	0.201	0.009	0.004	0.086	0.675
			0.024	0.009	0.109					
	Пик А	8.150	0.018	0.032	0.775	0.024	0.025	0.048	0.046	3.037
			0.284	0.012	3.806					
	Пик В	17.129	0.056	0.216	5.878	0.079	0.089	0.135	0.110	6.839
			0.268	0.060	3.230					
Ag ₄ Pb ₂ O ₆	$N(E_{ m F})$	3.547	0.010	0.006	0.156	0.030	0.010	0.024	0.037	1.255
-			0.127	0.005	1.676					
	Пик А	8.863	0.012	0.016	0.429	0.028	0.028	0.048	0.052	3.077
			0.358	0.016	4.317					
	Пик В	18.684	0.008	0.146	4.210	0.039	0.076	0.198	0.093	8.257
			0.238	0.051	3.448					

* Пики А и В показаны на рис. 3.

Рис. 4. Распределения зарядовой плотности в плоскости сечения комплектного (Ag₅Pb₂O₆) (*a*) и содержащего 50% Ag¹-вакансий оксида Ag_{5-x}Pb₂O₆ (*b*). *c* — зарядовая плотность в сечении призмы PbO₆ в составе Ag₅Pb₂O₆. Интервал между изоэлектонными контурами $\Delta \rho = 0.075 e/\text{\AA}^3$.

В зависимости от типа позиций (двух- или трехкратно координированные) энергетические распределения атомов Ag¹ и Ag² заметно различаются: центр полосы d-состояний атомов Ag² расположен на $\sim 1.2\,{\rm eV}$ глубже, чем в случае атомов Ag¹ (рис. 3). Кроме того, вблизи верхнего и нижнего краев Ag² 4d-полосы присутствуют заметные пики ПС (С и С' на рис. 3), свидетельствующие о гибридных взаимодействиях этих состояний с окружающими атомами кислорода. В результате ближайшие к E_F d-зоны серебра (пик A полной ПС оксида на рис. 3) образованы в основном состояниями двукратно координированных атомов Ag², образующих сетки Кагомэ, а следующий по энергии пик В — состояниями трехкратно координированных атомов Ag¹ (см. таблицу). Данная особенность может быть объяснена различиями межатомных взаимдействий этих центров со своим ближайшим окружением, зависящими от их координационного числа и межатомных расстояний Ag-O, которые составляют для атомов в сетке (Ag²) и в слое (Ag¹) соответственно 0.2122 и 0.2286 nm [6].

Из приведенной на рис. 4 карты зарядовой плотности ρ видно, что связывание Ag^2-O более сильное, чем Ag^1-O , причем связи серебро-кислород (и Pb-O) яв-

1* Физика твердого тела, 2005, том 47, вып. 4

ляются в оксиде основными. Наоборот, связи Ag–Ag, которым приписана [5] основная роль в оксиде, крайне слабы, перекрывание контуров ρ для отдельных атомов Ag²–Ag² (в сетке) незначительно, а в случае разнотипных центров (Ag¹–Ag²) отсутствует.

Введение вакансий (в позиции Ag¹) мало меняет общую схему распределения ПС комплектного оксида (см. рис. 3 и таблицу), а их основное воздействие сводится к опустошению антисвязывающих зон O2p-Pb6s. Уровень Ферми смещается вниз по шкале энергий и совпадает с низкоэнергетическим склоном пика А. Практически невозмущенной остается и система межатомных взаимодействий в оксиде: судя по распределениям ρ (рис. 4), для нестехиометрического оксида формального состава Ag₄Pb₂O₆ новых связей (за исключением незначительного перекрывания контуров ρ вдоль направлений Ag¹-Ag²) не возникает. Локализация зарядовой плотности в области вакансии мала: по нашим оценкам, заряд "пустой" МТ-сферы не превышает 0.3е. Основные изменения электронных свойств дефектного оксида связаны с ростом его "металлизации" за счет резкого (в ~ 2.7 раза) возрастания $N(E_{\rm F})$, а также с принципиальным изменением структуры прифермиевских зон, которые содержат сравнимые вклады Ag²4d- (47%) и O2*p*-состояний (35%).

Экспериментальные данные об изменениях свойств тройного оксида в области гомогенности (за исключением зависимостей параметров решетки от содержания серебра в образцах $Ag_{5-x}Pb_2O_{6-y}$ [3]) отсутствуют. Исходя из полученных результатов можно полагать, что эффекты нестехиометрии будут наиболее существенно влиять на свойства оксида, определяемые системой делокализованных (прифермиевских) электронов. Кроме того, расчеты показывают, что решеточные дефекты в $Ag_5Pb_2O_6$ (в отличие от ряда оксидов переход-

Рис. 5. Оценки зависимости коэффициента низкотемпературной электронной теплоемкости γ от электронной концентрации ес в области гомогенности фазы Бистрема–Эверса по данным расчетов для комплектного $Ag_5Pb_2O_6$ (штриховая линия) и дефектного по Ag^1 -подрешетке оксида номинального состава $Ag_4Pb_2O_6$ (сплошная линия). Нулевое значение соответствует ес в ячейке комплектного оксида.

ных металлов III-VI групп с частично заполненной *d*-оболочкой) не приводят к образованию в спектре новых "вакансионных" состояний. Следовательно, действие вакансий на электронный спектр тройного оксида можно свести к изменению степени заполнения зон при варьировании электронной концентрации (ес) в системе, т.е. в первом приближении описать его в рамках модели "жесткой зоны". Тогда, например, коэффициент низкотемпературной электронной теплоемкости (оценки в модели свободных электронов $\gamma = (\pi^2/3)N(E_{\rm F})k_{\rm B}^2)$ в области гомогенности будет меняться немонотонно, уменьшаясь до минимума (при ес в ячейке $\sim 108.15e$) и резко возрастая при дальнейшем отклонении состава оксида от комплектного (рис. 5). Видно, что оценки величин и общего поведения у в зависимости от ес, выполненные на основании строгих зонных расчетов для комплектного и дефектного оксидов, оказываются близкими. Можно предположить, что данные оценки будут справедливы и для случая "двойной" дефектности (по Ад- и О-подрешеткам), что было реализовано для образцов Ag_{5-x}Pb₂O_{6-v} [3].

Таким образом, проведенные расчеты позволили установить основные особенности строения энергетического спектра Ag₅Pb₂O₆ и впервые изучить влияние вакансий на зонную структуру оксида. Найдено, что межатомные взаимодействия в тройном оксиде (который ранее описывали [5,6] как ионный металл) имеют ковалентную составляющую за счет гибридизации состояний (Ag,Pb)-О. Для комплектного оксида основную роль в эффектах проводимости играют состояния антисвязывающих зон O2p-Pb6s. Наличие Ад-вакансий приводит к росту величины и изменению состава $N(E_{\rm F})$: определяющими становятся вклады O2p-состояния, 4d-состояния, а также атомов серебра, составляющих сетки Кагомэ (Ag²-тип). Заметим также, что в отличие от полуэмпирического расчета [5] наши данные указывают на то, что как электронное, так и дырочное допирование не приведет к изменению металлоподобного состояния системы на полупроводниковое.

Список литературы

- D. Djurek, Z. Medunic, A. Tonejc, M. Paljevic. Physica C 351, 1, 78 (2001).
- [2] A. Bystrom, L. Evers. Acta Chem. Scand. 4, 4, 613 (1950).
- [3] K. Iwasaki, H. Yamane, S. Kubota, J. Takahashi, Y. Miyazaki, T. Kajitani, K. Nakajima, T. Yamashita, M. Shimada. Physica C 382, 2–3, 263 (2002).
- [4] D. Djurek, Z. Medunic, M. Paljevic, A. Tonejc. Condmatter / 0310011.
- [5] T.D. Brennan, J.K. Burdett. Inorg. Chem. 33, 21, 4794 (1994).
- [6] M. Jansen, M. Bortz, K. Heidebrecht. J. Less-Comm. Met. 161, 1, 17 (1990).
- [7] S.Y. Savrasov. Phys. Rev. B 54, 23, 16470. (1996).
- [8] J.P. Perdew, K. Burke, Y. Wang. Phys. Rev. B 54, 23, 16533 (1996).