04;12 Сжатие токового канала и повышение заряда ионов при усилении тока в импульсном вакуумном разряде

© Е.А. Зверев, И.А. Кринберг

Иркутский государственный университет

Поступило в Редакцию 3 июня 1999 г.

Показано, что в зависимости от соотношения между длительностью импульса τ и характерными временами течения плазмы τ_L и расширения катодного пятна τ_S в импульсном вакуумном разряде реализуются 3 режима нарастания тока. При быстром росте ($\tau < \tau_L$) в катодной плазменной струе образуется перетяжка с высокими значениями температуры и плотности, при медленном нарастании ($\tau_L < \tau < \tau_S$) происходит равномерное магнитное сжатие токового канала, а при очень медленном нарастании ($\tau > \tau_S$) сжатие несущественно. В первых двух случаях возникает дополнительная неравновесная ионизация в токовом канале, приводящая к увеличению заряда ионов при усилении тока. В третьем случае сохраняется "замороженный" ионный состав, соответствующий параметрам плазмы в прикатодной области.

1. Как известно [1-5], в катодной плазменной струе (КПС) максимальная температура электронов $T_e = T_m \approx 4 - 8 \,\mathrm{eV}$ реализуется вблизи поверхности катода на расстоянии r, меньшем или порядка размеров катодного микропятна $r_m \approx 1\,\mu m$. Так как электронная плотность на таких расстояниях составляет $N_e = N_m \approx 10^{26} - 10^{27} \,\mathrm{m}^{-3}$ [4-6], то частота упругих и неупругих столкновений оказывается достаточной для установления ионизационного равновесия, описываемого системой уравнений Саха. При расширении плазмы от катода концентрация частиц быстро убывает (как $N_e(r) \approx N_m r_m^2/r^2$) и неупругие столкновения становятся редкими, вследствие чего имеет место быстрый переход от локального термодинамического равновесия к неравновесному состоянию. При этом плазма не успевает релаксировать к равновесному зарядовому распределению ионов, соответствующему новым значениям $T_e(r)$ и $N_e(r)$. Поэтому относительный ионный состав остается почти постоянным ("замороженным") [7,8] и примерно соответствует первоначальным значениям T_m и N_m в прикатодной области [9,10]. По

43

этой причине измерения ионного состава на различных расстояниях от катода (r = 1-5 cm) дают практически одинаковые результаты [11]. Согласно [12,13], ионный состав (и средний заряд ионов $Z_0 = 1-3$) почти не зависит и от силы тока в диапазоне 50 < I < 1000 A, если длительность импульса тока $\tau \ge 250 \, \mu$ s. Эти экспериментальные результаты согласуются с существующим представлением [14], что увеличение тока I приводит лишь к пропорциональному увеличению числа катодных микропятен и эмитируемых из них плазменных микроструй с теми же значениями параметров плазмы T_m и N_m . Вместе с тем измерения показывают, что в импульсах с длительностью $\tau = 6-60 \, \mu$ s заметное повышение среднего заряда ионов ($Z > Z_0$) происходит уже при токах I = 600-800 A [15], а при хаотических выбросах тока с $\tau \cong 10^{-2} \, \mu$ s даже при $I \approx 300$ A [16]. Анализ особенностей влияния силы тока на ионный состав КПС при различной длительности импульса является целью настоящей работы.

2. Естественным физическим механизмом, обеспечивающим рост заряда ионов при усилении тока, представляется сжатие КПС собственным магнитным полем, величина которого на границе струи определяется как B = 2I/cR, где R — радиус струи, c — скорость света. Эффективность сжатия существенно зависит от соотношения между характерным временем усиления тока (т.е. длительностью импульса τ), временем заполнения межэлектродного промежутка плазмой $\tau_L \approx L/V \approx 1 \, \mu s$ ($L \approx 1 \, \text{сm}, V \approx (1-3) \cdot 10^6 \, \text{сm/s}$ —скорость плазмы) [17] и временем распространения микропятен по поверхности катода τ_s . В качестве последней величины можно принять значение $\tau_s \approx 100 \, \mu s$, соответствующее установлению стабильного ионного состава в стационарной вакуумной дуге [12]. Примерно такое же характерное время получается из исследований диффузии катодных пятен [18].

В случае $\tau > \tau_S$ (который мы будем называть режимом очень медленного нарастания тока) вновь образующиеся по мере усиления тока микропятна (эмиссионные центры [14]) успевают распределиться внутри катодных макропятен примерно с одинаковой поверхностной плотностью [19]. Поэтому радиус прикатодной части КПС изменяется как $R_0 \propto \sqrt{I}$, а магнитное поле растет лишь как $B \propto I/R_0 \propto \sqrt{I}$. Так как при медленном росте тока образуется обычно несколько катодных макропятен (расстояния между которыми существенно больше, чем между микропятнами [5,19]), то радиус КПС, формирующейся в результате слияния отдельных плазменных струй, будет еще больше, а магнитное поле — соответственно меньше. Поэтому сжатие и нагрев плазмы на

При $\tau < \tau_L \ll \tau_S$, как было показано ранее [17], имеет место режим быстрого нарастания тока. Плазма не успевает распределиться по межэлектродному промежутку, и на расстоянии $r \approx 1-2$ mm от катода происходит быстрое локальное сжатие КПС (образование перетяжки) и повышение температуры и плотности до значений $T_e \approx 10^2 \text{ eV}$ и $N_e \approx 10^{23}-10^{24} \text{ m}^{-3}$. Таким образом, возникает новая область (помимо прикатодной) существования плотной и горячей плазмы, где будет происходить дальнейшая ионизация пришедших из прикатодной области ионов с $Z_0 = 1-3$. Данный режим реализуется в хаотических выбросах тока (характерных для высоковольтной стадии пробоя) с $\tau \cong 10^{-2} \mu$ s, во время которых кратность ионного заряда повышается до 6–7 [16].

Наконец, возможен промежуточный режим $\tau_S > \tau > \tau_L$ (который будем называть медленным нарастанием тока), когда плазма успевает достаточно равномерно распределиться вдоль разрядного промежутка, но катодное макропятно и основание плазменной струи сохраняют прежние размеры. Возможность малого изменения размера макропятна связана с тем, что ответственные за усиление тока новые микропятна образуются преимущественно под уже существующей плазмой [14,20]. В этом случае $R_0 \cong$ const и $B \propto I$, так что магнитное сжатие КПС заметно усиливается с ростом тока. Однако вследствие условия $\tau > \tau_L$ перетяжка не образуется, а сжатие и нагрев КПС оказываются более равномерными, но менее значительными.

3. Для детального исследования данного режима была использована магнитодинамическая модель КПС, подробно описанная в [5,17]. В качестве граничного условия в прикатодной области было принято $R_0 = 150 \,\mu\text{m}$, скорость ионов (с массой *m*) $V_0 \approx 4(5Z_0T_m/3m)^{1/2}$, $T_e = 0.4T_m$ [5], где $Z_0 = 2$, $T_m = 5 \,\text{eV}$ для катода из Cu и Ti и $Z_0 = 3$, $T_m = 7 \,\text{eV}$ для катода из W [10,11]. Поток веществ через граничное сечение считался пропорциональным току [17], изменение которого во времени моделировалось функцией $I(t) = I_0 + I_1(\sin(\pi t/\tau))$. В качестве начальных распределений использовались расчетные значения $T_e(r)$ и $N_e(r)$, соответствующие стационарному току $I_0 = 200 \,\text{A}$, при котором влияние магнитного поля на параметры КПС на расстояниях $r < 3 \,\text{cm}$ несущественно [5]. Вычисления проводились для импульсов длительностью $\tau = 6 \,\mu$ s и амплитудой $I_I = 500 \,\text{A}$ и $I_1 = 1600 \,\text{A}$.

На рис. 1 приведены полученные распределения параметров КПС для пика импульса, когда $t = \tau/2$, $I = I_p = I_0 + I_1$. Видно, что по мере усиления тока происходит уменьшение сечения струи и повышение температуры и плотности плазмы. По сравнению со слаботочной дугой $(I_1 = 0, I_p = I_0 = 200 \text{ A})$ плотность повышается на один-два порядка, но остается существенно меньше плотности N_m , характерной для прикатодной области. В то же время электронная температура в большей части токового канала повышается до температуры T_m и даже превосходит ее, что может привести к дальнейшей ионизации пришедших из прикатодной области ионов.

4. Оценки показывают, что при концентрациях $N_e \leq 10^{23} \text{ m}^{-3}$ (рис. 1) и характерном размере КПС L = 1 ст ионизационное равновесие в плазме не устанавливается и уравнение Саха не пригодно для расчета ионного состава. Так как скорость процесса тройной рекомбинации пропорциональна N_e^2 , а скорость ударной ионизации — первой степени N_e , то в КПС за пределами прикатодной области (когда $N_e \ll N_m$) рекомбинацию можно не учитывать. Вероятность образования иона с кратностью заряда n за время пролета τ_L можно оценить по соотношению $P_n = \tau_n/\tau_L$, где τ_n — характерное время ионизации. Последнее определяется равенством $\tau_n^{-1} = \langle v_e \sigma_n \rangle N_e$, где $\sigma_n(v_e)$ — сечение ионизации иона с кратностью заряда n - 1 электроном со скоростью v_e . Если для сечения ионизации ионов электронным ударом использовать формулу Гризинского [21], то после усреднения по максвелловскому распределению электронов имеем [2]:

$$k_n = \langle v_e \sigma_n \rangle = \sigma_0 \left(\frac{8T_e}{\pi m_e}\right)^{1/2} \left(\frac{E_0}{E_n}\right)^2 \exp(-E_n/T_e). \tag{1}$$

Здесь $\sigma_0 \approx 10^{-20} \text{ m}^2$, $E_0 = 13.6 \text{ eV}$, E_n и k_n — энергия и коэффициент ионизации. Результаты расчетов по формуле (1) для различных значений T_e и E_n приведены на рис. 2.

Как видно из рис. 1, концентрация и температура электронов при $I \ge 700$ A слабо меняются вдоль оси КПС, что позволяет использовать их средние значения \overline{N}_e и \overline{T}_e (см. таблицу). Если принять $P_n = 1$, то получаем соотношение $k_n(E_n, \overline{T}_e) = (\tau_L \overline{N}_e)^{-1}$, с помощью которого для заданных значений \overline{N}_e и \overline{T}_e можно определить энергию E_n , а затем по зависимости $E_n(n)$ и кратность заряда n. Найденное таким способом значение n (которое может оказаться дробным числом) будет

Рис. 1. Зависимость параметров плазменной струи от расстояния от катода (*a* — радиус струи, *b* и *c* — температура и концентрация электронов): *1, 2, 3* — расчет для пика импульса при токе 200, 700 и 1800 А.

Рис. 2. Энергия (*a*) и коэффициент (*b*) ионизации при образовании ионов с кратностью заряда *n*.

приблизительно соответствовать среднему заряду ионов (т.е. $Z \approx n$), так как существует возможность образования ионов с зарядом n + 1 (с вероятностью $P_{n+1} < 1$), а с другой стороны частично сохраняются или вновь образуются ионы с кратностью заряда меньше n.

Катод	I, A	\overline{T}_e , eV	$\overline{N}_e,$ m ⁻³	E_n , eV	Ζ	$Z_{ m exp}$	I _{exp} , A	$ au_{ ext{exp}},\ \mu ext{s}$
Ti	200 700 1800	1.5 5 12	10^{21} 10^{22} 10^{23}	$< E_1$ 22 57	(2.0) 2.6 4.3	2.2 ± 0.2 2.4 ± 0.3 3.5 ± 0.3	200 560 1860	250 60 6
W	200 700 1800	2 7 17	$10^{21} \\ 10^{22} \\ 10^{23}$	$< E_1$ 30 76	(3.0) 3.4 6.2	3.0 ± 0.3 4.4 ± 0.4 5.9 ± 0.6	200 800 1860	$100 \\ 6-12 \\ 6-12$

Зависимость параметров плазмы от силы тока в пике импульса

Результаты оценки среднего заряда ионов $Z \approx n$ для модельных параметров КПС (рис. 1) приведены в таблице. Видно, что при значениях \overline{N}_e и \overline{T}_e , характерных для тока I = 200 А, дополнительной ионизации ионов в основной части токового канала не происходит (вычисленное значение E_n оказалось меньше минимальной энергии ионизации). Поэтому будет сохраняться первоначальный ("замороженный") ионный состав, соответствующий параметрам плазмы в прикатодной области (соответствующие значения Z_0 указаны в таблице в скобках). При токах I > 500 А увеличение ионного заряда становится существенным ($Z > Z_0$) за счет дополнительной неравновесной ионизации в токовом канале. Расчетные значения Z хорошо согласуются с экспериментальными величинами Z_{exp} , полученными в [15] для импульсов тока с параметрами I_p и τ , близкими к использовавшимся при модельных расчетах.

Список литературы

- [1] Мойжес Б.Я., Немчинский В.А. // ЖТФ. 1980. Т. 50. В. 1. С.78-80.
- [2] Wieckert C. // Contrib. Plasma Phys. 1987. V. 27. N 5. P. 309-330.
- [3] Кринберг И.А., Луковникова М.П., Паперный В.Л. // ЖЭТФ. 1990. Т. 91.
 В.З. С. 806–820.
- [4] Jüttner B., Forster A. // Proc. XVII Inter. Symp. Discharges and Electr. Insulation in Vacuum. Berkley (USA): 1996. V. 1. P. 118–122.
- [5] Кринберг И.А., Зверев Е.А. // Физика плазмы. 1999. Т. 25. В. 1. С. 88-95.
- [6] Anders A., Anders S., Juttner B., Luck H. // IEEE Trans. Plasma. Sci. 1996. V. 24. N 1. P. 69–70.
- [7] Anders S., Anders A. // J. Pys. D: Appl. Phys. 1988. V. 21. N 1. P. 213-215.
- 4 Письма в ЖТФ, 2000, том 26, вып. 7

- [8] Anders A. // Phys. Rev. E. 1997. V55. N 4. P. 969–981.
- [9] Krinberg I.A., Lukovnikova M.P. // J. Phys. D: Appl. Phys. 1995. V. 28. N 4. P. 711–715.
- [10] Krinberg I.A., Lukovnikova M.P. // J. Phys. D: Appl. Phys. 1996. V. 29. N 11. P. 2901–2906.
- [11] Brown I.G., Galvin J.E. // IEEE Trans. Plasma Sci. 1989. V. 17. N 5. P. 679-682.
- [12] Galvin J.E., Brown I.G., MacGill R.A. // Rev. Sci. Instrum. 1990. V. 61. N 1. P. 583–585.
- [13] Николаев А.Г., Окс Е.М., Юшков Г.Ю. // ЖТФ. 1998. Т. 68. В5. С. 39-43.
- [14] Месяц Г.А. // УФН. 1995. Т. 165. В. 6. С. 601-626.
- [15] Anders A., Brown I.G., Dickinson M.R., MacGill R.A. // Rev. Sci. Instrum. 1996. V. 67. N 3. P. 1202–1204.
- [16] Короп Е.Д., Плютто А.А. // ЖТФ. 1971. Т. 41. В 5. С. 1055-1056.
- [17] Зверев Е.А., Кринберг И.А. // Письма в ЖТФ. 1998. Т. 24. В. 18. С. 50-56.
- [18] Anders A., Anders S., Juttner B., Brown I.G. // IEEE Trans. Plasma Sci. 1993.
 V. 21. N 3. P. 305–310.
- [19] Siemroth P., Schulke T., Witke T. // IEEE Trans. Plasma Sci. 1995. V. 23. N 9. P. 919–925.
- [20] Puchkarev V.F., Bochkarev M.B. // J. Phys. D.: Appl. Phys. 1994. V. 27. N 6. P. 1214–1219.
- [21] Смирнов Б.М. Атомные столкновения и элементарные процессы в плазме. М.: Атомиздат, 1968. 364 с.