05;11;12 Эпитаксиальные пленки феррит-гранатов с анизотропией типа "наклонная легкая плоскость"

© Р.М. Михерский, С.В. Дубинко

КБ "Домен" при Симферопольском государственном университете

Поступило в Редакцию 31 августа 1999 г.

Исследуется характер магнитной анизотропии в эпитаксиальных пленках феррит-гранатов с ориентацией поверхности (112). Показано, что при определенном соотношении констант одноосной и ромбической анизотропии в подобных пленках может существовать анизотропия типа "наклонная легкая плоскость". Обоснована возможность применения эпитаксиальных пленок феррит-гранатов с анизотропией типа "наклонная легкая плоскость" в качестве высокочувствительных датчиков пространственно-неоднородных магнитных полей.

Для визуализации пространственно неоднородных магнитных полей, например создаваемых магнитными носителями информации, все большее применение находят магнитооптические датчики на основе эпитаксиальных пленок феррит-гранатов (ЭПФГ). Наиболее перспективными датчиками такого типа являются датчики на основе ЭПФГ с анизотропией типа "легкая плоскость", позволяющие с высокой степенью точности определить величину и пространственное распределение напряженности внешнего магнитного поля.

В случае отсутствия внешнего магнитного поля ЭПФГ с анизотропией "легкая плоскость" однородно намагничена в своей плоскости. Под действием нормальной компоненты поля сигнала, записанного на носитель информации, магнитный момент выходит из плоскости пленки, являющейся "легкой плоскостью". Угол его отклонения в любой точке плоскости зависит от величины нормальной компоненты внешнего поля в этой точке. Появление компоненты намагниченности в направлении, перпендикулярном плоскости пленки, фиксируется с помощью эффекта Фарадея. При всех преимуществах данных датчиков существенным их недостатком является малая чувствительность. Это связано с тем, что

90

Одним из направлений повышения чувствительности магнитооптических датчиков является поиск ЭПФГ с новыми типами магнитной анизотропии.

В данной работе ставилась задача исследовать характер магнитной анизотропии в ЭПФГ с ориентацией поверхности (112).

Энергию магнитной анизотропии для пленок с ориентацией (112) можно представить в виде суммы трех компонент: одноосной анизотропии, энергии ромбической анизотропии и энергии кубической анизотропии. Как показывает эксперимент, константа кубической анизотропии на 1–2 порядка меньше, чем константы других типов анизотропии, и не оказывает существенного влияния на процессы перемагничивания в пленке. Пренебрегая энергией кубической анизотропии, плотность энергии магнитной анизотропии можно записать:

$$W = K_u \cos^2 \theta + K_{ort} \left(\sin^2 \theta \sin^2 \varphi + \sqrt{2} \sin(2\theta) \sin \varphi \right), \qquad (1)$$

где $K_u = K'_u + 2\pi M_s^2$; K'_u — константа одноосной анизотропии; M_s — намагниченность насыщения; K_{ort} — константа ромбической анизотропии; φ и θ — сферические координаты вектора намагниченности, отсчитываемые от осей *x* и *z* соответственно, причем в данном случае декартова ось *x* выбрана вдоль кристаллографического направления [$\bar{1}10$], ось *y* — вдоль [$\bar{1}11$], а ось *z* — перпендикулярно плоскости пленки вдоль [112].

Минимизируя выражение (1) по сферическим координатам, найдем решения, описывающие равновесное положение вектора намагниченности. Данные решения представлены в таблице, где $\alpha = \frac{1}{2} \operatorname{arctg} \frac{2\sqrt{2}|K_{orr}|}{|K_{orr} - K_u|}$.

Более наглядное представление результатов, приведенных в таблице, дает рис. 1. В областях 1–4 существуют два равновесных положения вектора намагниченности, которые соответствуют магнитной анизотропии типа "угловая фаза", в частности на границе между областями 2 и 3 реализуется анизотропия типа "легкая ось". В области 5 наблюдается

Область	Соотношение констант	Решения
1	$K_{ort} > 0, \ K_{ort} \leqslant K_u < 2K_{ort}$	1) $\theta = \frac{\pi}{2} + \alpha$, $\varphi = \frac{\pi}{2}$; 2) $\theta = \frac{\pi}{2} - \alpha$, $\varphi = \frac{3\pi}{2}$
2	$K_{ort} \geqslant 0, \ K_{ort} \geqslant K_u$	1) $\theta = \pi - \alpha$, $\varphi = \frac{\pi}{2}$; 2) $\theta = \alpha$, $\varphi = \frac{3\pi}{2}$
3	$K_{ort} < 0, \ K_{ort} \geqslant K_u$	1) $\theta = \alpha$, $\varphi = \frac{\pi}{2}$; 2) $\theta = \pi - \alpha$, $\varphi = \frac{3\pi}{2}$
4	$K_{ort} < 0, \ K_{ort} \leqslant K_u$	1) $\theta = \frac{\pi}{2} - \alpha$, $\varphi = \frac{\pi}{2}$; 2) $\theta = \frac{\pi}{2} + \alpha$, $\varphi = \frac{3\pi}{2}$
5	$K_u > 0, \ K_{ort} = 0$	$ heta=rac{\pi}{2}, arphi\in [0,\ldots,2\pi]$
6	$K_u > 0, K_{ort} > 0, K_u > 2K_{ort}$	1) $\theta = \frac{\pi}{2}, \ \varphi = 0;$ 2) $\theta = \frac{\pi}{2}, \ \varphi = \pi$
7	$K_u > 0, \ K_{ort} > 0, \ K_u = 2K_{ort}$	$\sin\varphi = -\sqrt{2}\operatorname{ctg}\theta$

магнитная анизотропия типа "легкая плоскость". В области 6 имеет место анизотропия типа "легкая ось в плоскости". Наиболее интересным из приведенных в таблице является случай $K_u > 0$, $K_{ort} > 0$, $K_u = 2K_{ort}$ (область 7). Рассмотрим для этого случая энергию магнитной анизотропии, например при значениях $K_u = 0.8 \cdot 10^4 \text{ J/m}^3$, $K_{ort} = 0.4 \cdot 10^4 \text{ J/m}^3$. На рис. 2 дана зависимость этой энергии от координат φ и θ .

Как видно из представленного рисунка, минимуму энергии магнитной анизотропии соответствуют не два решения, как, например, в случаях 1 и 6, а поверхность, определяемая выражением: $\sin \varphi = -\sqrt{2} \operatorname{ctg} \theta$.

Рис. 1. Зависимость областей равновесного положения вектора намагниченности от констант магнитной анизотропии.

Исследования показывают, что это выражение описывает не что иное, как плоскость, пересекающуюся с плоскостью пленки вдоль кристаллографического направления [110] под углом 35°16′. Данную плоскость, соответствующую минимуму энергии анизотропии по аналогии с "легкой плоскостью", будем называть "наклонная легкая плоскость".

Возможность существования ЭПФГ с анизотропией типа "наклонная легкая плоскость" представляет не только теоретический интерес, но и большое практическое значение, так как подобные пленки могут найти широкое применение в качестве высокочувствительных датчиков пространственно неоднородных магнитных полей. Действительно, вектор намагниченности, находящийся в "наклонной легкой плоскости", имеет в общем случае проекцию на перпендикуляр к поверхности пленки и, следовательно, изменение его положения в этой плоскости может быть зафиксировано с помощью эффекта Фарадея.

В представленной модели пленки с анизотропией типа "наклонная легкая плоскость" должны обладать чувствительностью к бесконечно малым магнитным полям, так как любое поле, имеющее проекцию на "наклонную легкую плоскость", снимает вырождение вдоль этой

Рис. 2. Зависимость плотности энергии магнитной анизотропии для пленки типа "наклонная легкая плоскость" при $K_u = 0.8 \cdot 10^4 \text{ J/m}^3$, $K_{ort} = 0.4 \cdot 10^4 \text{ J/m}^3$ от сферических координат φ и θ . Линии на рисунке соответствуют одинаковой плотности энергии магнитной анизотропии. Цифры около каждой линии обозначают величину плотности энергии.

проекции. Поэтому реальная чувствительность должна оцениваться путем введения в выражение (1) энергии кубической анизотропии. При этом расчеты показывают, что даже при учете кубической анизотропии чувствительность таких пленок к внешним магнитным полям по крайней мере на 1–2 порядка выше, чем у пленок с анизотропией типа "легкая плоскость", применяемых в качестве датчиков магнитных полей в настоящее время.