01;05

Температурная зависимость теплоемкости и времени релаксации при фазовом переходе второго рода сегнетоэлектрического типа

© С.А. Романчук

Московский государственный университет им. М.В. Ломоносова

Поступило в Редакцию 29 сентября 1999 г.

На примере простейшей модели сегнетоэлектрика проведен расчет температурной зависимости теплоемкости и времени релаксации для всех значений температур, включая критическую точку. В настоящей работе описание фазового перехода второго рода базируется на основе кинетического уравнения для функции распределения значений внутреннего параметра, предложенного Ю.Л. Климонтовичем [1–3]. Проведено сравнение результатов расчета теплоемкости по теории Ландау и на основе распределения Больцмана, являющегося равновесным решением кинетического уравнения. К скачку теплоемкости, имеющемуся в теории Ландау, в результате рассмотрения добавился пик в области температуры перехода. Теплоемкость и время релаксации являются непрерывными функциями во всей области температур, включая критическую точку. Расчеты проведены как аналитически, так и численно, проведено сравнение с оценками, ранее полученными Ю.Л. Климонтовичем в рамках этого подхода.

1. Введение

В работах [1-3] для описания фазового перехода второго рода в сегнетоэлектрике предложено использовать следующее кинетическое уравнение для функции распределения значений внутреннего параметра x:

$$\frac{\partial f(x,R,t)}{\partial t} = \frac{\partial}{\partial x} \left[D_x \frac{\partial f}{\partial x} + \frac{1}{m\gamma} \frac{\partial h_{eff}(x,a_f)}{\partial x} f \right] + D \frac{\partial^2 f}{\partial R^2}, \tag{1}$$

где введено обозначение для эффективной потенциальной энергии нелинейного осциллятора:

$$h_{eff} = \frac{m\omega_0^2 x^2}{2} \left[(1 - a_f) + \frac{bx^2}{2} \right]. \tag{2}$$

Уравнение (1) описывает поведение среды осцилляторов, распределенной в пространстве (переменная R), положение которых описывается внутренним параметром x, имеющим, например, смысл расстояния между ионами в одноионной модели кристалла [4]. Дипольное вза-имодействие между осцилляторами учитывается через эффективное поле Лоренца (параметр a_f в (2)). Фазовый переход описывается феноменологической зависимостью параметра a_f от температуры

$$1 - a_f = \frac{T - T_c}{T_c}. (3)$$

Равновесным решением уравнения (1) является распределение Больцмана

$$f(x) = \exp\left(\frac{\phi - h_{eff}(x)}{kT}\right). \tag{4}$$

В силу того что учет взаимодействия между различными осцилляторами осуществляется только через параметр a_f эффективного поля Лоренца, подсчет термодинамических величин не составляет труда — общая свободная энергия кристалла представляется в виде

$$F = N\phi. \tag{5}$$

В статьях [2,3] проведена оценка температурного хода теплоемкости исходя из этих положений. В этой работе проводится вычисление теплоемкости, основанное на выражении (5) в точном виде для всего диапазона температур.

Кроме анализа равновесного состояния, решая кинетическое уравнение (1), мы можем найти и величины, характеризующие кинетику фазового перехода. Решение уравнения производится в нашей работе численно. Как результат, мы получаем зависимость времени релаксации от температуры и сравниваем с оценками, полученными в [3].

2. Вычисление термодинамических функций

Прежде всего, перепишем выражение для h_{eff} в более удобной форме, введя следующие параметры:

$$a = 1 - a_f; \quad \xi = \frac{x}{x_T}; \quad x_T^2 = \frac{kT}{m\omega_0^2}; \quad x_T = x_{T_c}\sqrt{T/T_c}; \quad \varepsilon = x_T^2 b.$$
 (6)

Тогда выражение для h_{eff} принимает вид

$$h_{eff} = kT \frac{\xi^2}{2} \left(a + \frac{\varepsilon}{2} \xi^2 \right). \tag{7}$$

Свободная энергия системы осцилляторов записывается следующим образом:

$$F = -kTN\ln z,\tag{8}$$

где

$$z = x_T \int \exp\left(-\frac{\xi^2}{2} \left(a + \frac{\varepsilon}{2} \xi^2\right)\right) d\xi. \tag{9}$$

Таким образом, зная статсумму (9), мы имеем возможность найти все термодинамические функции системы. В частности, теплоемкость

$$C = -T \frac{\partial^2 F}{\partial T^2}. (10)$$

Интеграл (9) выражается через функции Вебера

$$z = x_{T_c} \Gamma\left(\frac{1}{2}\right) \left(\frac{2T}{\varepsilon_c T_c}\right)^{1/4} \exp\left(\frac{a^2 T_c}{8\varepsilon_c T}\right) u\left(0, a\sqrt{\frac{T_c}{2\varepsilon_c T}}\right). \tag{11}$$

Произведя дифференцирование (11), согласно (10), мы получаем теплоемкость как функцию температуры. Не выписывая соответствующей формулы, представим результат вычислений графически для разных параметров нелинейности ε_c (рис. 1).

Как мы видим, поведение теплоемкости является регулярным во всем диапазоне температур и представляет собой комбинацию классической "ступеньки" Ландау, возникающей при переходе температуры через T_c , и пика в этой области. Максимум теплоемкости смещен от T_c в сторону меньших температур, что можно показать непосредственным дифференцированием (11) при $T=T_c$.

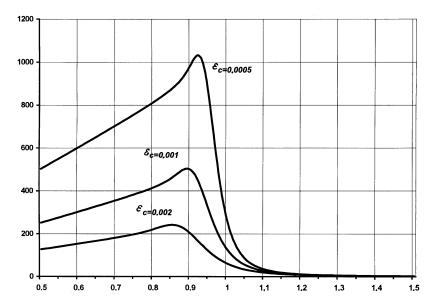


Рис. 1. Температурная зависимость теплоемкости от температуры вблизи критической точки $(T_c = 1)$.

Данный результат является следствием того, что мы учитываем флуктуации микроскопического дипольного момента (который является параметром порядка в теории Ландау), так как дисперсия введенной функции распределения не зависит от числа частиц и дает вклад в статсумму при любых температурах, в отличие от теории Ландау, где все расчеты строятся на максимально вероятных значениях параметра порядка.

3. Решение кинетического уравнения

Для получения всех характеристик фазового перехода, описываемого кинетическим уравнением, необходимо получить его решение функцию распределения, которая, в случае выбора неравновесного начального распределения, является зависящей от времени функцией. Так как получить аналитическое решение данного уравнения в общем

виде невозможно, решение задачи было проведено численно. Попытки построить разностную схему, являющуюся устойчивой, для данного уравнения к успеху не привели. Было принято решение поступить нетрадиционным способом — с помощью перехода к рассмотрению системы точек, описываемой некоторыми уравнениями Ланжевена. Для того чтобы функция распределения этих точек была искомой функцией распределения, необхоимо и достаточно, чтобы рассматриваемое кинетическое уравнение являлось уравнением Фоккера—Планка для модельной системы точек. Таким образом, встает задача построения уравнений Ланжевена по уравнению Фоккера—Планка. Записав кинетическое уравнение (1) в дивергентном виде:

$$\frac{\partial f}{\partial t} = -\text{div}(\mathbf{J}),\tag{12}$$

где

$$J_x = -D_x \frac{\partial f}{\partial x} - \frac{1}{m\gamma} \frac{\partial h_{eff}}{\partial x} f, \qquad J_R = -D_R \frac{\partial f}{\partial R},$$

можно написать уравнения Ланжевена, соответствующие (12):

$$\begin{cases} \frac{dx}{dt} = -\frac{1}{m\gamma} \frac{\partial h}{\partial x} + \frac{dw_x}{dt} \\ \frac{dR}{dt} = \frac{dw_R}{dt}, \end{cases}$$

где w_x , w_R — гауссовы процессы,

$$E\left(\left(w_{\alpha}(t) - w_{\alpha}(t_0)\right)^2\right) = 2D_{\alpha}(t - t_0). \tag{13}$$

Получить решение системы уравнений Ланжевена для двух координат численным методом также нетрудно: согласно уравнениям, можно получить координаты всех точек на плоскости через небольшой промежуток времени, найдя соответствующие приращения координат, которые на каждом шаге определяются с помощью уравнений Ланжевена. При этом используется генератор случайной величины, подчиняющейся распределнию Гаусса с необходимой дисперсией.

Преимущество данного метода заключается в том, что отпадают проблемы с устойчивостью: алгоритм остается корректным практически при любом шаге — является абсолютно устойчивым. Недостаток —

для получения достаточно гладкой функции распределения необходимо рассматривать движение большого числа точек, что является достаточно трудоемкой вычислительной процедурой; рост точности вычисления функции распределения пропорционален корню из количества точек, тогда как время вычисления прямо пропорционально ему, что является существенным недостатком. Однако решающим фактором является именно первый момент: метод позволяет решать уравнение, а для вычисления большинства параметров негладкость функции распределения несущественна (например, для вычисления средней энергии или дисперсии).

4. Расчет времени релаксации

Имея возможность решать уравнение (1), мы можем найти время релаксации в системе, описываемой уравнением (1). Определим время релаксации как характерное время, при котором начальное неравновесное распределение переходит в равновесное (начальное отклонение невелико). В качестве параметра, характеризующего распределение, выберем второй момент. Тогда дисперсия распределения в зависимости от времени хорошо аппроксимируется экспоненциальной функцией. Показатель экспоненты и есть обратное время релаксации.

Для теоретической оценки времени релаксации воспользуемся самосогласованным приближением для второго момента функции распределения, предложенным Ю.Л. Климонтовичем в [3]. Для этого домножим (1) на x^2 и проинтегрируем по dx. Интегрируя по частям, получаем для $E=\langle x^2\rangle$ с учетом приближения $\langle x^4\rangle\Rightarrow E^2$ следующее уравнение:

$$\frac{\partial E(R,t)}{\partial t} = 2D_x - 2\Gamma(1 - a_f + bE)E + D_R \frac{\partial^2 E}{\partial R^2}.$$
 (14)

Его стационарное и однородное решение определяется из уравнения:

$$E^2 + \frac{1 - a_f}{h}E = \frac{D_x}{\Gamma h}. (15)$$

С помощью уравнения (16) с соответствующим источником Ланжевена $\delta y_E(k,t)$ находим в линейном приближении уравнение для компонент Фурье-флуктуации $\delta E(k,t)$:

$$\frac{\partial \delta E(k,t)}{\partial t} + \frac{\delta E(k,t)}{\tau_E} = \delta y_E(k,t), \tag{16}$$

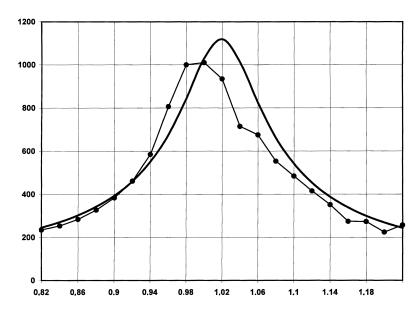


Рис. 2. Зависимость времени релаксации $\langle x2 \rangle$ от температуры ($\varepsilon_c = 0.0005$).

где время релаксации τ_E :

$$\frac{1}{\tau_E} = 2\Gamma \left(\frac{T - T_c}{T_c} + 2bE \right) + D_R k^2 \tag{17}$$

(E определяется решением уравнения (15)).

Проделанные напрямую, согласно вышеописанному алгоритму, численные расчеты времени релаксации хорошо согласуются с приведенными теоретическими оценками. Для получения временной зависимости $\delta E(t)$ за основу принималось однородное стационарное состояние (так что k=0 в (17)) и подвергалось возмущению посредством изменения температуры $T\to T+\delta T$. Таким образом, бывшее равновесное состояние таковым уже не являлось и эволюционировало с течением времени к новому, соответствующему температуре $T+\delta T$, стационарному состоянию. Результаты расчетов приведены на графике (рис. 2). Как мы видим, пик времени релаксации смещен от T_c в сторону более низких температур, а вдали от критической точки время релаксации падает по закону Кюри.

5. Заключение

В работе произведен точный расчет температурного хода теплоем-кости в рамках подхода, предложенного Ю.Л. Климонтовичем. При этом вид эффективного гамильтониана, который и является причиной наличия фазового перехода в системе, принципиально остался тем же самым, что и в теории Ландау [5], что допускает возможность использования данной модели не только при рассмотрении сегнетоэлектриков, но и как базовой при общем рассмотрении фазовых переходов второго рода. Например, температурная зависимость теплоемкости, подобная полученной нами, наблюдается экспериментально в магнетиках, например в $Fe_{72}Pt_{28}$ Invar [6], и рассчитывается на основании другой модели для Cr_2O_3 [7].

В рамках данного подхода меняется смысл параметра порядка — в нашем рассмотрении им является расстояние между максимумами функции распределения. Он по-прежнему характеризует изменение симметрии системы (у функции распределения появляется два максимума при переходе через критическую и точку вместо одного), однако система не обязана испытывать спонтанную поляризованность (или намагниченность для магнетиков) — первый момент стационарной функции распределения по-прежнему остается равным нулю.

Использование кинетического уравнения (1) позволяет описать также и кинетические свойства фазового перехода. Путем его численного решения была получена зависимость времени релаксации от температуры. Время релаксации в системе фактически подчиняется закону Кюри в некотором удалении от критической точки и имеет конечное значение при $T=T_c$.

Полученные результаты показывают возможность описания свойств фазового перехода во всей области температур, включая критическую точку.

Список литературы

- [1] Климонтович Ю.Л. Статистическая теория открытых систем. М.: Янус; Dordrecht: Kluwer Academic, 1995.
- [2] Klimontovich Yu.L. // Phys. Lett. 1996. A210. P. 65-70.
- [3] Klimontovich Yu.L. // International Journal of Bifurcation and Chaos. 1998. V. 8. N 4. P. 661-676.

- [4] Струков Б.А., Ливанюк А.П. Физичесие основы сегнетоэлектрических явлений кристаллах. М.: Наука, Физматлит, 1995.
- [5] Ландау Л.Д., Лифшиц Е.М. Статистическая физика. Ч. 1. М.: Наука, 1995.
- [6] Rellinghaus B.J., Wassermann E.F. // Physical Review B. 1995. V. 51. N 5.
- [7] Камилов Н.К., Муртазаев А.К., Алиев Х.К. // УФН. 1999. Т. 169. № 7. С. 783.