от Связанные состояния в искривленной наноструктуре

© С. Альбеверио, В.А. Гейлер, В.А. Маргулис

Institut für Angewandte Mathematik und Stochastic Universität Bonn, D-53115 Bonn, Germany Мордовский государственный университет имени Н.П. Огарева, Саранск

Поступило в Редакцию 4 октября 1999 г.

Рассмотрен спектр оператора Шредингера с потенциалом нулевого радиуса в наноструктуре постоянной полной кривизны. Найдены положение связанных состояний в яме нулевого радиуса и соответствующая энергия связи, изучена их зависимость от длины рассеяния и кривизны. Указано условие появления связанного состояния.

Разработанная недавно техника получения искривленных двумерных слоев в наноструктурах [1] делает актуальным теоретическое исследование свойств электронных систем в таких слоях. Интересные физические эффекты, обусловленные влиянием кривизны на электронный энергетический спектр, изучались в [1-4]. В [5] отмечалась возможность получения наноструктур типа фуллерена с отрицательной кривизной поверхности. Модели квантового эффекта Холла на поверхностях как положительной, так и отрицательной кривизны рассматривались в [6-8]. Во всех этих системах важным является учет влияния короткодействующих примесей на энергетический спектр электронов. В связи с этим в настоящей заметке изучаются связанные на примесях состояния в слоях постоянной гауссовой кривизны. В качестве потенциала примеси выбирается потенциал нулевого радиуса (точечный потенциал); эффективность применения таких потенциалов была продемонстрирована в широком круге вопросов теоретической физики [9–12]. При этом модели с потенциалами нулевого радиуса часто позволяют получить не только качественные, но и количественные результаты, обладающие широкой сферой применения [10], [12]. Последнее в особенности относится к системам с малой энергией связи. Точечные потенциалы оказалось возможным использовать и для изучения периодических систем в слоях постоянной отрицательной кривизны [13].

18

Целью работы является получение явных формул для дискретных уровней квантовых слабосвязанных систем с помощью потенциала пулевого радиуса на односвязных поверхностях постоянной гауссовой кривизны K и исследование их поведения в зависимости от K. Гамильтониан H^0 свободной частицы в нашем случае имеет вид $H^0 = -(\hbar^2/2m)\Delta_{LB}$, где Δ_{LB} — оператор Лапласа–Бельтрами [14]. Рассмотрим возмущение оператора H^0 потенциалом нулевого радиуса, сосредоточенным в точке q. Задание такого потенциала равносильно заданию краевого условия в точке q, которое определяется вещественным параметром α , связанным с длиной рассеяния λ на потенциале соотношением $\pi\hbar^2\alpha/m = -\ln\lambda$. Возмущенный оператор H имеет функцию Грина $G_E(x, y)$, выражающуюся через функцию Грина $G_E^0(x, y)$ оператора H^0

$$G_E(x, y) = G_E^0(x, y) - [Q(E) + \alpha]^{-1} G_E^0(x, q) G_E^0(q, y),$$
(1)

где Q(E) есть перенормированное значение $G_E^0(x, y)$ на диагонали: $Q(E) = \lim_{x \to q} [G_E(x, q) + (m/\pi\hbar^2) \ln\rho(x, q)] (\rho$ — геодезическое расстояние на поверхности). Связанное состояние с энергией $E_0 \equiv E_0(K)$ в потенциале нулевого радиуса (если оно существует) лежит ниже энергии основного состояния ε_0 гамильтониана H^0 (заметим, что $\varepsilon_0 > 0$ при K < 0 и $\varepsilon_0 = 0$ при $K \ge 0$). Энергия E_0 , как следует из (1), удовлетворяет уравнению

$$Q(E) + \alpha = 0. \tag{2}$$

Соответствующая состоянию E_0 нормированная собственная функция имеет вид

$$\Psi_0(x) = [Q'(E_0)]^{-1/2} G_{E_0}(x,q).$$

Рассмотрим вначале случай K > 0 (сфера радиуса $a = K^{-1/2}$). В этом случае $-\Delta_{LB}$ есть оператор квадрата углового момента \mathbf{L}^2 . Как хорошо известно, спектр H^0 дискретный и состоит из уровней $\varepsilon_l = (\hbar^2/2ma^2)l(l+1)$, вырожденных с кратностью 2l+1 (l = 0, 1, ...). Воспользуемся выражением для G_E^0 [14]

$$G_E^0(x, y) = \frac{m}{2\hbar^2 \cos(\pi\zeta/2)} \mathcal{P}_{-1/2+\zeta} \left(-\cos(\rho(x, y)/a) \right),$$
(3)

где $\mathcal{P}_{\mu}(x)$ — функция Лежандра,

2* Письма в ЖТФ, 2000, том 26, вып. 3

$$\zeta \equiv \zeta(E) = \left[\frac{1}{4} + \frac{2mE}{\hbar^2 K}\right]^{1/2}.$$
(4)

Тогда получим

$$Q(E) = -\frac{m}{\pi\hbar^2} \left[\psi\left(\frac{1}{2} + \zeta\right) - \frac{\pi}{2} \operatorname{tg}(\pi\zeta) - \ln(2a) + \gamma \right], \qquad (5)$$

где $\psi(x)$ — логарифмическая производная Г-функции Эйлера, а $\gamma = -\psi(1)$ — постоянная Эйлера. Из (5) следует, что $\lim_{E\to-\infty} Q(E) = -\infty$, $\lim_{E\to\varepsilon_l=0} Q(E) = +\infty$, $\lim_{E\to\varepsilon_l+0} Q(E) = -\infty$. Следовательно, при любом α уравнение (2) имеет единственное решение E_l , $l = 0, 1, \ldots$ в каждом из промежутков $(-\infty, \varepsilon_0)$, $(0, \varepsilon_1), \ldots, (\varepsilon_l, \varepsilon_{l+1}), \ldots$. Таким образом, спектр H состоит из простых собственных значений E_l , $l \ge 0$, а также из уровней ε_l , $l \ge 1$, кратность которых в спектре H равна 2l. Используя асимптотики Q(E) при $|2ma^2 E/\hbar^2 - (l+1)| \ll 1$ и при $E \to -\infty$, рассмотрим наиболее важные предельные случаи.

Пусть $\lambda \ll a$, тогда $E_0(K) \simeq -2\hbar^2/e^{2\gamma}m\lambda^2$ и $E_1(K) \simeq \hbar^2/4ma^2 \times \times \ln(2a\lambda^{-1})$. Поскольку $E_0(0) = -2\hbar^2/e^{2\gamma}m\lambda^2$ [12], положительная кривизна практически не влияет на величину основного состояния. С другой стороны, $E_1(K) - E_0(K) > \varepsilon_0 - E_0(0)$, т.е. энергия связи возрастает с кривизной.

В случае $\lambda \gg a$ имеем $E_0(K) \simeq \hbar^2/4ma^2 \ln(2a\lambda^{-1}), E_1(K) \simeq$ $\simeq \hbar^2/ma^2 + 3\hbar^2/4ma^2 \ln(2a/e\lambda)$. При этом $E_1(K) - E_0(K) < \varepsilon_1 - \varepsilon_0$, т. е. при большой кривизне яма нулевого радиуса уменьшает энергию связи.

Наконец, если a и λ сравнимы, точнее, если $\lambda \sim 8a$, то

$$E_0(K)\simeq -rac{\hbar^2}{8ma^2}-rac{\hbar^2}{ma^2\psi^{\prime\prime\prime}(1/2)}\lnrac{\lambda}{8a}.$$

Таким образом, в этом случае при умеренных значениях a энергия связанного состояния почти на порядок больше соответствующей энергии при K = 0.

Теперь рассмотрим случай K < 0 (псевдосфера радиуса $a = |K|^{-1/2}$). В этом случае спектр H^0 непрерывный и заполняет полуось

Письма в ЖТФ, 2000, том 26, вып. 3

 $E \ge \varepsilon_0(K) = \hbar^2/8ma^2$. Для функции Грина оператора H^0 имеем явную формулу [14]

$$G_{E}^{0}(x,y) = \frac{m}{2\pi\hbar^{2}} \frac{\Gamma^{2}(1/2+\zeta)}{\Gamma(1+2\zeta)} \left(\operatorname{ch} \frac{\rho(x,y)}{a} \right)^{-1-\zeta} \times F\left(\frac{1}{2}+\zeta, \frac{1}{2}+\zeta; 1+2\zeta; \operatorname{ch}^{-1} \frac{\rho(x,y)}{a} \right),$$
(6)

где F(a, b, c; z) — гипергеометрическая функция, а ζ снова определяется по формуле (4). Из (6) получаем [13]: $Q(E) = -(m/\pi\hbar^2)[\psi(1/2+\zeta) - \ln 2a + \gamma]$. Данный случай существенно отличается от случая $K \ge 0$: теперь связывает не любая яма нулевого радиуса, а только яма с длиной рассеяния $\lambda < 8a$. Кроме уровня E_0 (если он есть), в спектр H входят все точки непрерывного спектра оператора H^0 . Таким образом, отрицательная кривизна может "выдавить" уровень из ямы в непрерывный спектр. Уровень, который только что появляется ($\lambda \sim 8a$), можно определить из формулы $E_0 \simeq \hbar^2/8ma^2\{1 - (4/\pi^4) [\ln(8a/\lambda)]^2\}.$

В предельном случае достаточно глубокой ямы $\lambda \ll a$ имеем $E_0(K) \simeq E_0(0) + (\hbar/a)\sqrt{-E_0(0)/2m}$; следовательно, в случае K < 0 кривизна существенно влияет на положение уровня в глубокой яме, уменьшая энергию связи. В заключение укажем простую оценку при $\lambda \sim 2a$. В этом случае $E_0(K) \simeq (\pi^2 \hbar^2 / 12ma^2) \ln(\lambda/2a)$, и энергия связи также меньше своего значения при K = 0.

Из полученных в работе результатов можно сделать следующие выводы. В случае, когда K > 0, спектр дискретный и уровень в яме нулевого радиуса сдвигается вниз по оси E, однако в глубокой яме с точностью до $O(|E|^{-1})$ уровень не меняется, тем самым энергия связи растет с кривизной. Как и при K = 0, в этом случае уровень образуется в яме с любой длиной рассеяния.

В случае K < 0, в отличие от $K \ge 0$, необходимым и достаточным условием образования уровня является условие $\lambda < 8a$. Если это условие выполнено, то спектр H состоит из уровня E_0 и непрерывного спектра — полуоси $E \ge \hbar^2 |K|/8m$. Уровни в яме смещаются вверх по оси E так же, как и край непрерывного спектра, при этом величина щели $\varepsilon_0(K) - E_0(K)$ меньше своего значения при K = 0.

Работа поддержана грантами РФФИ и Министерства образования РФ.

Письма в ЖТФ, 2000, том 26, вып. 3

Список литературы

- [1] Магарилл Л.И., Романов Д.А., Чаплик А.В. // ЖЭТФ. 1998. Т. 113. № 4. С. 1411–1428.
- [2] Foden C.L., Leadbeater M.L., Burroughes J., Pepper M. // J. Phys.: Cond. Matter. 1994. V. 6. L127–L134.
- [3] Foden C.L., Leadbeater M.L., Pepper M. // Phys. Rev. B. 1995. V. 52. N 12. P. 8646–8649.
- [4] Encinosa M., Etemadi B. // Phys. Rev. A. 1998. V. 58. N 1. P. 77-81.
- [5] Vanderbilt D., Tersoff J. // Phys. Rev. Lett. 1992. V. 68. N 4. P. 511-513.
- [6] Avron J.E., Klein M., Pnueli A. // Phys. Rev. Lett. 1992. V. 69. N 1. P. 128-131.
- [7] Lengo R., Li D. // Nucl. Phys. B. 1994. V. 413. P. 735-753.
- [8] Carey A.L., Hannabus K.C., Mathai V., McCann P. // Commun. Mat. Phys. 1998. V. 190. N 3. P. 629–673.
- [9] Базь А.И., Зельдович Я.Б., Переломов Ф.М. Рассеяние, реакции и распады в нерелятивистской квантовой механике. М.: Наука, 1971. 544 с.
- [10] Демков Ю.Н., Островсикй В.Н. Метод потенциалов нулевого радиуса в атомной физике. Л.: ЛГУ, 1975. 240 с.
- [11] Павлов Б.С. // УМН. 1987. Т. 42. В. 6. С. 99-131.
- [12] Альбеверио С., Гестези Ф., Холден Х., Хеэг-Крон Р. Решаемые модели в квантовой механике. М.: Мир, 1991. 568 с.
- [13] Брюнинг Й., Гейлер В.А. // ТМФ. 1999. Т. 119. № 3. С. 368–380.
- [14] Grosche C., Steiner F. Handbook of Feynman path integrals. Berlin etc.: Springer-Verlag, 1998. 486 p.

Письма в ЖТФ, 2000, том 26, вып. 3