Спин-переориентационные переходы и доменная структура в монокристаллах соединений TbFe_{11-x}Co_xTi

© С.А. Никитин*,***, Т.И. Иванова*,***, Н.Ю. Панкратов*,***, Ю.Г. Пастушенков**, К.П. Скоков**

* Московский государственный университет им. М.В. Ломоносова,

119899 Москва, Россия

** Тверской государственный университет,

*** Международная лаборатория сильных магнитных полей и низких температур,

53-421 Вроцлав, Польша

E-mail: ivanova@phys.msu.ru

(Поступила в Редакцию 22 июня 2004 г.)

Проведено исследование магнитной структуры монокристаллических соединений TbFe_{11-x}Co_xTi в широком интервале температур и при высоких магнитных полях (до 14 T). Измерения (намагниченности, магнитострикции), а также исследование доменной структуры показали, что спин-переориентационные переходы (СПП) в монокристаллах соединений TbFe_{11-x}Co_xTi существенно зависят от концентрации кобальта. Найдено, что температуры СПП и пороговые магнитные поля определяются конкуренцией магнитной анизотропии 3*d*-подрешетки и подрешетки тербия. Показано, что в этих соединениях низкотемпературная фаза с плоскостной анизотропией отделяется от высокотемпературной фазы с одноосной анизотропией промежуточной метастабильной фазой, где присутствуют как домены с одноосной фазой, так и домены с плоскостной фазой.

Работа поддержана грантом Университеты России № 01.01.054, Федеральной программой поддержки ведущих научных школ (грант НШ-205.2003.02) и Российским фондом фундаментальных исследований (грант № 02-02-16523).

1. Введение

Современные высокоэффективные постоянные магниты создаются на базе интерметаллических соединений 3d- и 4f-металлов. Редкоземельные (P3) 4f-металлы обеспечивают высокую намагниченность насыщения и гигантскую анизотропию, в то время как 3d-элементы (железо или кобальт) ответственны за высокие значения температуры магнитного упорядочения и коэрцитивной силы, а также за высокую остаточную намагниченность и намагниченность насыщения [1]. К числу таких соединений относится состав Nd₂Fe₁₄B, который в настоящее время нашел широкое применение в технике. В то же время перспективными являются также магнитные материалы на основе P3 интерметаллидов R(Fe,Co)₁₁Ti с кристаллической структурой ThMn₁₂ [2–8].

В этих интерметаллидах магнитные подрешетки РЗ металла и 3d-переходного металла жестко связаны между собой сильным обменным взаимодействием. В результате конкуренции магнитной анизотропии 3d-подрешетки и магнитной анизотропии РЗ подрешетки в них наблюдаются спин-переориентационные фазовые переходы (СПП). Замещение железа на кобальт в 3d-подрешетке соединений RFe_{11} Ті существенно влияет на структуру 3d-зоны, поэтому РЗ интерметаллиды $R(Fe,Co)_{11}$ Ті представляют значительный интерес для исследования влияния электронной структуры на магнитные свойства, фазовые переходы и обменные взаимодействия [9–12].

Настоящая работа посвящена исследованию влияния замещений в 3*d*-подрешетке (атомы железа замещаются атомами кобальта) на характер обменых взаимодействий, магнитного упорядочения и доменной структуры в интерметаллических соединениях $Tb(Fe,Co)_{11}Ti$ с тетрагональной кристаллической структурой $ThMn_{12}$. Для решения поставленной задачи были проведены комплексные экспериментальные исследования магнитных свойств и доменной структуры монокристаллов соединений $TbFe_{11-x}Co_xTi$ в широком интервале температур и магнитных полей.

2. Методика эксперимента и образцы

Исследуемые сплавы TbFe_{11-x}Co_xTi изготовлены методом индукционной плавки в алундовых тиглях на установке типа "Донец-1" в атмосфере аргона. Компоненты сплава представляли собой высокочистые металлы: Тb и Ті, а также Fe чистотой 99.9%. Полученные сплавы подвергались высокотемпературному отжигу в печи сопротивления типа СШВЛ. Для улучшения гомогенности слитки вновь размалывались и переплавлялись в вакууме. Однофазность полученных сплавов контролировалась методом рентгеновских дифрактограмм, полученных на порошковых образцах соединений. Все полученные соединения TbFe_{11-x}Co_xTi (x = 0, 1, 2, 3, 4, 5) кристаллизуются в тетрагональную структуру типа ThMn₁₂ с пространственной группой I4/mmm. Обнаружено, что нагрев сплавов до температуры 1800 К, а затем быстрое охлаждение до 1500 К с последующим медленным охлаждением в течение 3-8 часов до 1400 К приводят к образованию монокристаллов основной фазы в форме пластинок в плоскости (110) и иголочек с осью [001].

¹⁷⁰⁰⁰⁰ Тверь, Россия

Монокристаллы соединений $TbFe_{11-x}Co_xTi$ препарировались из этих слитков. Качество монокристаллов контролировалось методом Лауэ.

Температурные и полевые зависимости удельной намагниченности соединений TbFe_{11-x}Co_xTi были измерены: 1) в магнитных полях до 3Т при температурах от 300 К до температур Кюри на вибрационном магнитометре; 2) в интервале температур 77-300 К в полях до 1.2 Т на маятниковом магнитометре; 3) при температурах 4.2-250 К в магнитных полях до 14 Т на емкостном магнитометре в сверхпроводящем соленоиде в Международной лаборатории сильных магнитных полей и низких температур (г. Вроцлав, Польша). Температуры Кюри (T_{C}) соединений определялись по температурным зависимостям удельной намагниченности, измеренным в поле $\mu_0 H = 5 \cdot 10^{-2}$ Т. Исследование доменной структуры монокристаллов TbFe_{11-x}Co_xTi на поверхностях различной ориентации в широком интервале температур 4.2-370 К было проведено магнитооптическим методом Керра в физическом Институте Макса Планка (г. Штуттгарт, Германия).

3. Экспериментальные результаты и их обсуждение

3.1. Магнитные свойства. Температура Кюри соединений TbFe_{11-x}Co_xTi была определена, как температура быстрого спада удельной намагниченности, измеренной в поле 500 Ое (рис. 1). Наши исследования показали, что замещение железа атомами кабальта в системе TbFe_{11-r}Co_rTi приводит к монотонному возрастанию величины температуры Кюри Тс. При изменении концентрации кобальта от x = 1 до 2, T_C изменяется со скоростью ~ 90 К/атом, а в интерале от x = 4 до 5, со скоростью 20 К/атом (рис. 2). Температура Кюри в основном определяется обменным взаимодействием внутри 3d-подрешетки, содержащей атомы железа и кобальта. Как показали нейтронографические исследования [13], в соединениях с кристаллической структурой типа ThMn12 атомы Со заполняют преимущественно позиции 8f и 8j, где расстояния между атомами Fe меньше критического значения ~ 0.24 nm, и интеграл обменного взаимодействия между атомами Fe имеет отрицательный знак. Атомы Со имеют положительный обменный интеграл, поэтому при замещении Fe на Co положительное обменное взаимодействие в 3*d*-подрешетке возрастает, вследствие чего температура Кюри также возрастает. Следует отметить, что различие в температурах Кюри для соединений TbFe_{11-x}Co_xTi и YFe_{11-x}Co_xTi (магнитный момент У равен нулю) не превышает 10%.

Намагниченность насыщения σ_S для монокристаллов TbFe_{11-x}Co_xTi сначала слабо возрастает с увеличением концентрации Co и достигает небольшого максимума при x = 2, а затем σ_S уменьшается, что коррелирует с поведением намагниченности в других P3 интерметаллических соединениях при замещении в них Fe на Co, а также в бинарных сплавах Fe–Co. Это явление можно

Рис. 1. Температурная зависимость намагниченности соединений TbFe_{11-x}Co_xTi для различных концентраций кобальта.

Рис. 2. Концентрационная зависимость величины критического магнитного поля и температуры Кюри в монокристаллах соединения $TbFe_{11-x}Co_xTi$.

объяснить в рамках зонной теории магнетизма, как результат последовательного заполнения 3*d*-зон с положительной и отрицательной ориентацией спинов при замещении железа на кобальт, атомы которого имеют на один 3*d*-электрон больше, чем атомы Fe [14].

Изотермы намагниченности $\sigma(H)$ монокристаллов ТbFe_{11-x}Co_xTi демонстрируют сложный характер, свидетельствующий о наличии спин-переориентационых фазовых переходов в этих составах, причем температура и характер переходов существенно зависят от концентрации кобальта. Особый интерес представляют резкие скачки, наблюдающиеся на кривых $\sigma(H)$ для монокристаллов TbFe_{11-x}Co_xTi при критических значениях магнитного поля H_{cr}. Рассмотрим более подробно магнитные свойства соединения TbFe₉Co₂Ti. На рис. 3 представлены изотермы намагниченности, измеренные вдоль трех главных кристаллографических направлений [001], [110], [100] для монокристалла TbFe₉Co₂Ti при температуре 4.2 К в магнитных полях до 140 kOe. Как видно, ось [100], вдоль которой намагниченность быстро достигает насыщения, является осью легкого намагничивания (ОЛН), а ось [001], где поле насыщения максимально — осью трудного намагничивания (ОТН). Сле-

Рис. 3. Изотермы намагниченности монокристалла TbFe₉Co₂Ti при температуре 4.2 K вдоль трех кристаллографических осей [001], [110], [100].

Рис. 4. Изотермы намагниченности монокристалла TbFe₉Co₂Ti вдоль оси [001] в интервале температур 80–300 К.

довательно, при $T = 4.2 \, \text{K}$ базисная плоскость является легкой плоскостью. На рис. 4 представлены изотермы намагниченности, измеренные вдоль оси [001] монокристалла TbFe₉Co₂Ti в интервале температур 80-300 К в магнитных полях до 12 kOe. При низких температурах кривые $\sigma(H)$ имеют практически линейный ход, что характерно для случая, когда ось [001] является осью трудного намагничивания. С повышением температуры на кривых $\sigma(H)$ наблюдается скачок при критическом значении магнитного поля $H = H_{\rm cr}$, после чего кривая быстро выходит на насыщение. При высоких температурах T < 275 К ось [001] становится осью легкого намагничивания, т.е. в соединении TbFe₉Co₂Ti наблюдается спиновая переориентация. Вблизи температуры спин-переориентационного перехода ($T_{SR} = 275 \, \text{K}$) на изотермах намагниченности видны характерные "изломы" (рис. 4). Подобное поведение намагниченности свидетельствует о том, что в соединении TbFe₉Co₂Ti происходит фазовый переход первого рода типа FOMP (First Order Magnetization Process), индуцированный магнитным полем. Эти фазовые переходы вызваны "перебросом" вектора спонтанной намагниченности I_S из одного минимума энергии магнитокристаллической анизотропии (МКА) в другой минимум [15]. Следовательно, при низких температурах $T < T_{SR}$ TbFe₉Co₂Ti обладает плоскостной анизотропией, а при высоких этот материал становится одноосным ферримагнетиком. Эти два состояния разделяются промежуточной фазой, которая является метастабильной, так как в этом состоянии, как будет показано далее, присутствуют как домены с одноосной фазой, так и домены с плоскостной фазой. На кривых $\sigma(H)$ (рис. 3 и 4) в районе FOMP четко выделяется поле, где $\frac{\partial^2 \sigma}{\partial H^2}$ максимальна и положительна $(H = H_{cr1}), \frac{\partial^2 \sigma}{\partial H^2}$ минимальна и отрицательна $(H = H_{cr2}).$ Интервал полей H_{cr1} – H_{cr2} определяет область фазового перехода FOMP. Гистерезис в этой области практически незаметен. Температурная зависимость среднего значения H_{cr} для монокристалла TbFe₉Co₂Ti представлена на рис. 5. Средняя величина H_{cr} определялась по максимуму первой производной $\sigma(H)$, что соответствует точке перегиба на кривых намагничивания. Для всех концентраций кобальта величина критического поля H_{cr} убывает с возрастанием температуры, причем в области высоких температур кривые $H_{\rm cr}(T)$ имеют практически линейный характер. На рис. 2 представлена концентрационная зависимость *H*_{cr} для монокристаллов TbFe_{11-x}Co_xTi при T = 4.2 K. Как видно, максимум этой кривой приходится на x = 2.

Температура спин-переориентационного перехода смещается под действием внешнего магнитного поля в сторону более низких температур.

СПП заметно влияет на зависимости магнитострикции от температуры и внешнего магнитного поля. Так, температурные зависимости продольной магнитострикции $\lambda_{\parallel}(T)$, измеренные вдоль оси [001] монокристалла TbFe₉Co₂Ti в магнитных полях до 12 kOe, демонстрируют четко выраженный максимум при T = 269 K, близкой к T_{SR} (рис. 6). При уменьшении магнитного поля максимум кривой $\lambda_{\parallel}(T)$ смещается в сторону более низких температур, например, при H = 3.5 kOe максимум наблюдается при T = 251 K.

Рис. 5. Температурная зависимость *H*_{cr} для монокристалла TbFe₉Co₂Ti.

Рис. 6. Температурная зависимость продольной и поперечной магнитострикции монокристалла TbFe₉Co₂Ti при различных значениях магнитного поля.

Наблюдаемую зависимость $\lambda_{\parallel}(T)$ можно объяснить следующим образом: при $T > T_{SR}$ магнитострикция вдоль оси [001] должна иметь довольно низкое значение, так как в силу четности эффекта смещение границ антипараллельных доменов не вносит вклада в магнитострикцию, кроме того, отсутствует и магнитострикция вращения, потому что нет вращения вектора M_S в поле $H \parallel$ [001]. При охлаждении ниже T_{SR} происходит поворот вектора M_S на угол θ_0 относительно оси [001], а включение магнитного поля возвращает M_S назад к оси [001], и в результате возникает магнитострикция вращения. Наблюдаемый эффект будет равен: $\lambda = \lambda_c - \lambda_c \cos^2 \theta_0$, где λ_c — магнитострикционная константа, а θ_0 — угол между вектором намагниченности и осью c.

3.2. Доменная структура. Исследование доменной структуры (ДС) монокристаллов TbFe_{11-x}Co_xTi на поверхностях различной ориентации в широком интервале температур 4.2-370 К проведено магнитооптическим методом Керра с использованием металлографического микроскопа "Polywar Met" (Reichner-Jung, Germany), на котором закреплялся криостат с образцом. Методика подобных низкотемпературных исследований подробно описана в [16–18]. Трансформация ДС при спин-переориентационном переходе первого рода в соединениях TbFe_{11-r}Co_rTi наблюдалась для двух составов ТbFe₁₁Ті и ТbFe₉Co₂Ті. Магнитострикция соединений TbFe_{11-x}Co_xTi велика ($\lambda \sim 10^{-4}$) и магнитоупругий вклад в магнитокристаллическую анизотропию значителен. Поэтому на данных соединениях можно проследить не только влияние замешений, но и влияние наведенной за счет магнитоупругого вклада одноосной магнитной анизотропии на характер перестройки ДС. В связи с этим в работе рассмотрено два случая: (1) переход из магнитоодноосного в магнитодвуосное состояние (тип анизотропии "легкая плоскость") в соединении TbFe₁₁Ti и (2) переход из магнитоодноосного в магнитодвуосное (тип анизотропии "легкая плоскость с выделенной за счет магнитоупругого вклада преимущественной легкой осью") в соединении TbFe₉Co₂Ti.

В высокотемпературной области соединение TbFe₁₁Ti является магнитоодноосным. При понижении температуры до $T_{SR} = 310$ K происходит изменение типа анизотропии от МКА "легкая ось"к МКА "легкая плоскость". Реализуется метастабильное состояние ОЛH+ЛП. Затем при $T_{SR2} = 290$ K происходит переход к анизотропии типа "легкая плоскость", что и прослеживается по наблюдаемым ДС.

Экстремальный случай влияния напряжений на характер изменения ДС в процессе спиновой переориентации рассмотрен на примере соединения TbFe₉Co₂Ti. Магнитоупругий вклад в МКА соединений системы Тb(Fe,Co)11Ті является большим. Поэтому в области анизотропии "легкая плоскость" в соединениях Тb(Fe,Co)₁₁Ti часто реализуется ситуация, когда одна из ОЛН типа [110] выделена в качестве оси легчайшего намагничивания за счет имеющихся в образце напряжений. Такой кристалл является квазимагнитоодноосным и в низкотемпературной области, для которой характерна анизотропия типа "легкая плоскость". Как показано в работе [8], для соединений Tb(FeCo)11Ti на магнитной фазовой диаграмме имеется переходная область, в которой энергии высокотемпературной (I) и низкотемпературной (II) фаз оказываются равными. В этой области для соединения TbFe9Co2Ti обнаруживаются две системы ДС, соответствующие низкотемпературной и высокотемпературной фазам (рис. 7).

Фаза (I) представлена полосовой ДС. Фаза с такими доменами в случае, показанном на рис. 7, расположена непосредственно под поверхностью наблюдения. ОЛН этой системы доменов, совпадающая с кристаллографической осью [110] тетрагональной решетки, составляет приблизительно 60° с поверхностью образца. Система

Рис. 7. Доменная структура интерметаллида TbFe₉Co₂Ti. Промежуточное состояние ОЛH+ЛП, T = 295 K.

Рис. 8. Перестройка ДС монокристалла TbFe₉Co₂Ti при фазовом переходе от состояния ОЛН (a) к состоянию ЛП с выделенной ОЛН (d-f). Температура образца: 370 (a), 326 (b), 293 (c), 220 (d), 200 (e) и 80 K (f).

доменов (I), представляющая магнитную фазу с типом анизотропии ОЛН, расположена под доменами фазы (II). Это полосовые 180° домены, намагниченность которых лежит вдоль оси [001]. ДС (I) подмагничивает систему доменов (II), вследствие чего ширина доменов в системе звездочек периодически меняется. Изменение ДС в интервале температур, соответствующем изменению типа анизотропии от ОЛН к ЛП с выделенной осью легчайшего намагничивания, представлено на рис. 8 для соединения TbFe₉Co₂Ti. Отметим, что в данном случае фазы (I) и (II) существуют одновременно в температурном интервале 220–360 К.

4. Заключение

Спин-переориентационные переходы в соединениях TbFe_{11-x}Co_xTi обусловлены магнитокристаллическими взаимодействиями, в которых можно выделить два основных вклада.

В области низких температур СПП типа FOMP обусловлены главным образом конкуренцией между различными параметрами кристаллического поля, которые индуцируют анизотропию РЗ подрешетки. Минимум энергии МКА возникает вследствие различных знаков констант МКА первого и более высокого порядков. С повышением температур большую роль приобретает компенсация МКА 3d- и 4f-подрешеток. Одноионная МКА ионов тербия с отрицательным коэффициентом Стивенса благоприятствует плоскостной анизотропии, в то время как одноионная анизотропия ионов Fe благоприятствует одноосной анизотропии. Замещение Fe кобальтом уменьшает МКА 3*d*-подрешетки, поскольку одноионные константы МКА железа и кобальта имеют противоположные знаки. В результате температура СПП существенно понижается с возрастанием концентрации кобальта. Вблизи температуры компенсации МКА наблюдается спонтанный СПП, связанный с "перебросом" вектора намагниченности из базисной плоскости к оси с. Одновременное присутствие доменов с одноосной фазой и доменов с плоскостной фазой в области СПП подтверждает наличие метастабильной фазы в области перехода.

Список литературы

- K.H.J. Buschow. Handbook of Ferromagnetic Materials. North Holland. Vol. 4 (1989).
- [2] A.A. Kazakov, N.V. Kudrevatykh, P.E. Markin. J. Magn. Magn. Mater. 146, 208 (1995).
- [3] K.Yu. Guslienko, X.C. Kou, R. Grössinger. J. Magn. Magn. Mater. 150, 383 (1995).
- [4] С.А. Никитин, Т.И. Иванова, И.С. Терешина, В.И. Зубенко, И.В. Телегина. ФТТ 37, 2, 561 (1995).
- [5] С.А. Никитин, И.С. Терешина, Т.И. Иванова. ФТТ 38, 2, 507 (1996).
- [6] M.D. Kuzmin, A.K. Zvezdin. J. Appl. Phys. 83, 3329 (1998).
- [7] I.S. Tereshina, S.A. Nikitin, I.V. Telegina, V.V. Zubenko, Yu.G. Pastushenkov, K.P. Skokov. J. Alloys Comp. 283, 45 (1999).
- [8] T.I. Ivanova, Yu.G. Pastushenkov, K.P. Skokov, I.V. Telegina, I.A. Tskhadadze. J. Alloys Comp. 280, 20 (1998).
- [9] V.K. Sinha, S.F. Cheng, W.E. Wallace, S.G. Sankar. J. Magn. Magn. Mater. 81, 227 (1989).
- [10] J.J. Bara, B.F. Bogacz, A.T. Pedziwiator, R. Wielgosz. J. Alloys Comp. 307, 45 (2000).
- [11] Z.F. Gu, D.C. Zeng, Z.Y. Liu, S.Z. Liang, J.C.P. Klaasse, E. Bruck, F.R. de Boer, K.H.J. Buschow. J. Alloys Comp. **321**, 40 (2001).
- [12] T.I. Ivanova, S.A. Nikitin, D.V. Tokareva, I.V. Telegina, Yu.G. Pastushenkov, K.P. Skokov, W. Suski, Yu. Skourski. J. Magn. Magn. Mater. 238, 215 (2002).
- [13] Y. Yang, L. Kong, H. Song, J. Yang, Y. Ding, B. Zhang, C. Ye, L. Jin. J. Appl. Phys. 67, 4632 (1990).
- [14] К. Тэйлор, М. Дарби. Физика редкоземельных соединений. Мир, М. (1974).
- [15] G. Asti, F. Bolzoni. J. Appl. Phys. 58, 1924 (1985).
- [16] Yu.G. Pastushenkov, K.-D. Durst, H. Kronmüller. Phys. Stat. Sol. (a) **104**, 487 (1987).
- [17] A. Forkl, T. Dragon, H. Kronmüller. J. Appl. Phys. 67, 6, 3047 (1990).
- [18] Yu.G. Pastushenkov, A. Forkl, H. Kronmüller. J. Magn. Magn. Mater. 174, 278 (1997).