Фазовые состояния и сегнетоэлектрические свойства керамики Pb(Zr,Sn,Ti)O₃

© В.В. Шварцман, С.Е. Аксенов, Е.Д. Политова

Государственный научный центр

Научно-исследовательский физико-химический институт им. Л.Я. Карпова, 103064 Москва, Россия

(Поступило в Редакцию 22 декабря 1999 г.)

Изучены сегнетоэлектрические и диэлектрические свойства керамики $Pb_{0.99}[(Zr_{1-x}Sn_x)_{1-y}Ti_y]_{0.98}Nb_{0.02}O_3$ с x = 0.5 (y = 0.04 - 0.12) (I) и x = 0.4 (y = 0.06 - 0.09) (II), построены фазовые T - x- и E - T-диаграммы. Установлено, что замещение циркония оловом способствует расширению температурной области сосуществования сегнетоэлектрической и антисегнетоэлектрической фаз, тогда как повышение содержания титана приводит к сужению области неполярной фазы.

Введение

05

Твердые растворы на основе цирконата свинца нашли широкое применение в электронной технике, приборостроении и других областях. Однако изучение особенностей поведения этих оксидов в областях вблизи фазовых переходов по-прежнему актуально как с научной, так и с практической точек зрения.

PbZrO₃ при комнатной температуре имеет ромбическую элементарную ячейку и является антисегнетоэлектриком (АСЭ). При температуре ~ 510 К происходит структурный фазовый переход сначала в ромбоэдрическую сегнетоэлектрическую (СЭ) фазу, интервал существования которой колеблется в пределах 0-26°C, а затем — в параэлектрическую (ПЭ) фазу [1]. При частичном замещении циркония титаном область стабильности высокотемпературной ромбоэдрической СЭ фазы расширяется, и при содержании титана более 5 at% твердые растворы проявляют СЭ свойства уже при комнатной температуре [2]. Введение в октаэдрические позиции решетки катионов олова сопровождается уменьшением искажения перовскитной ромбоэдрической ячейки СЭ фазы, уменьшается также разность объемов ячеек АСЭ и СЭ фаз, что позволяет дополнительно варьировать температурные и концентрационные области существования этих фаз [3]. Установлено, что интервал температур, в котором свободные энергии АСЭ и СЭ фаз близки, расширяется в сравнении с таковым в составах, не содержащих олово [4]. Учитывая эту особенность, можно ожидать индуцирование перехода из АСЭ и СЭ состояние при относительно низких значениях напряженности электрического поля и в широком интервале температур. Это открывает перспективы использования характерных для таких переходов скачков электромеханических и термодинамических характеристик для преобразования энергии [5], в частности, в криогенных устройствах, эффект охлаждения в которых основан на проявлении электрокалорического эффекта (ЭКЭ) — охлаждение рабочего тела при индуцированном и адиабатических условиях переходе в СЭ состояние [6]. Как следует из термодинамического рассмотрения, наибольшей величины ЭКЭ достигает при фазовых переходах [7]. Наибольшее экспериментальное значение $\Delta T = 2.6$ К, вполне достаточное для практической реализации эффекта, было получено для образцов системы Pb(Zr,Sn,Ti)O₃ при 425 К [8]. Разработка керамики для электрокалорических применений предполагает в первую очередь создание составов, которые испытывают индуцированный фазовый переход при напряженностях электрического поля E < 20 kV/cm, имеющих температуры фазовых переходов в интервале ~ 50 К вблизи комнатной температуры.

В данной работе исследовали фазовые состояния, диэлектрические и сегнетоэлектрические свойства твердых растворов Pb_{0.99}[(Zr_{1-x}Sn_x)_{1-y}Ti_y]_{0.98}Nb_{0.02}O₃, x = 0.5(y = 0.04-0.12) (серия I) и x = 0.4 (y = 0.06-0.09) (серия II) с целью оценить перспективность дальнейшего изучения ЭКЭ в этих составах.

Экспериментальная часть

Получение образцы получали методом твердофазного синтеза из соответствующих оксидов и карбонатов. Вводили 2 at% ниобия с целью повышения удельного сопротивления образцов и уменьшения величины коэрцитивного поля [9,10]. Синтез образцов проводили при температуре $T_1 = 850^{\circ}$ C (6 h). Спекание керамики осуществляли в серии I при температуре $T_2 = 1300^{\circ}$ C (1 h), а для составов с y = 0.085-0.095 при $T_2 = 1300^{\circ}$ и при $T_2 = 1380^{\circ}$ C (1 h). Керамику в серии II спекали при $T_2 = 1380^{\circ}$ C (1 h).

М е т о д ы и з м е р е н и й. Фазовый состав образцов изучали методом рентгенофазового анализа (РФА), диэлектрические измерения проводили с помощью автоматизированной установки, позволяющей измерять диэлектрическую проницаемость ε , удельную проводимость σ и тангенс угла диэлектрических потерь tg δ в диапазоне температур 300–900 K на частотах 100 Hz–100 kHz. Петли диэлектрического гистерезиса наблюдали с помощью установки на основе схемы Сойера–Тауэра в диапазоне температур 300–600 К при частоте приложенного поля 50 Hz и подаваемом на образец напряжении до 2 kV.

Экспериментальные результаты

По данным РФА, основной фазой всех образцов является фаза со структурой типа перовскита. На дифрактограммах образцов с x = 0.5 присутствуют дополнительные линии, указывающие на наличие небольшого количества примесных фаз. Образцы системы I с $y \le 0.08$ имеют тетрагональную элементарную ячейку, а с $y \ge 0.085$ — ромбоэдрическую. В серии II элементарная ячейка для всех образцов ромбоэдрическая. Увеличение у закономерно приводит к уменьшению объема элементарной ячейки в образцах обеих серий (рис. 1). Для образцов I при концентрационном морфотропном переходе от тетрагональной к ромбоэдрической симметрии наблюдается скачкообразное увеличение объема элементарной ячейки.

Образцы II при комнатной температуре находятся в СЭ фазе. Величина спонтанной поляризации P_s , определенная по петлям диэлектрического гистерезиса, увеличивается от 7 до $12.5 \,\mu\text{C/cm}^2$ при повышении у. Напряженность коэрцитивного поля E_c составляет ~ $4.5 \,\text{kV/cm}$.

Образцы I, полученные при $T_2 = 1300^{\circ}$ C, характеризуются низкой электрической прочностью и непригодны для изучения петель диэлектрического гистерезиса. Фазовые состояния для них идентифицировали с помощью метода генерации второй гармоники (ГВГ) [11]. В образцах тетрагональной симметрии ($y \le 0.08$) интен-

Рис. 1. Концентрационные зависимости параметров c_t (1), a_t (2), a_t (3), a_{kh} (4) для образцов системы Pb_{0.99}[($Zr_{1-x}Sn_x)_{1-y}Ti_y$]_{0.98}Nb_{0.02}O₃ (серия I) и a_{kh} (5) (серия II).

Рис. 2. Фазовая диаграмма температура-напряженность электрического образца поля для $Pb_{0.99}[(Zr_{0.6}Sn_{0.4})_{0.94}Ti_{0.06}]_{0.98}Nb_{0.02}O_3.$ 1 — температурная зависимость напряженности поля $E_1(T)$, индуцирующего фазовый переход АСЭ-СЭ; 2 — температурная зависимость напряженности поля, при котором происходит обратный переход в АСЭ фазу $E_2(T)$.

сивность сигнала ГВГ мала (q < 5), что характерно для центросимметричных (АСЭ). Для образцов с $y \ge 0.085$ q > 20, что указывает на нецентросимметричность (СЭ свойства) данных составов. С данными ГВГ согласуется наблюдение при комнатной температуре насыщенных петель гистерезиса для образцов с y = 0.085-0.095, полученных при $T_2 = 1380^{\circ}$ С. Для этих составов спонтанная поляризация увеличивается от 13 (y = 0.085) до 15.5 μ C/cm² (y = 0.095), а E_c составляет ~ 4.8 kV/cm.

Образцы, находившиеся при комнатной температуре в СЭ фазе, при нагреве испытывают фазовый переход в АСЭ состояние, которое идентифицируется по возникновению двойных петель диэлектрического гистерезиса. Между температурой, при которой исчезают насыщенные СЭ петли, и температурой, выше которой наблюдаются двойные петли, существуют интервалы $\sim 10{-}25\,{
m K}$ для образцов II и $\sim 20-40\,\mathrm{K}$ для образцов I. В этом интервале при небольшой напряженности поля наблюдали ненасыщенные СЭ петли, которые при дальнейшем увеличении напряженности поля искажались (возникала перетяжка) и приобретали вид двойных АСЭ петель. Температура фазового перехода АСЭ-СЭ, определенная по появлению в режиме охлаждения насыщенных петель гистерезиса, повышается при увеличении у от 300 до 380 К (*x* = 0.4) и от 320 до 350 К (*x* = 0.5).

В обеих сериях увеличение у сопровождается уменьшением напряженности поля, индуцирующего фазовый переход АСЭ–СЭ (E_1), и напряженности поля, при котором происходит обратный переход в АСЭ фазу (E_2) (см. таблицу). При этом значения E_1 больше для образцов I. На рис. 2 представлена T-E-диаграмма для образцов с y = 0.06 (II). При приложении и снятии электрического поля изменение состояния

Состав образца	$P_s, \ \mu \mathrm{C/cm^2}$	E_c , kV/cm	E_1 , kV/cm	E_2 , kV/cm
x = 0.5, y = 0.085	12.9	4.8	11 $(T = 390 \mathrm{K})$	8.4 $(T = 390 \text{ K})$
x = 0.5, y = 0.09	13.5	4.8	7.3 $(T = 390 \mathrm{K})$	2.4 $(T = 390 \mathrm{K})$
x = 0.5, y = 0.095	15.5	4.8	5.8 $(T = 390 \mathrm{K})$	$2 (T = 390 \mathrm{K})$
x = 0.4, y = 0.06	7.2	4.5	13 $(T = 400 \mathrm{K})$	$8 (T = 400 \mathrm{K})$
x = 0.4, y = 0.08	10.1	4.6	$7 (T = 400 \mathrm{K})$	$3 (T = 400 \mathrm{K})$
x = 0.4, y = 0.09	12.5	4.5	4.3 $(T = 400 \mathrm{K})$	$0.6 \ (T = 400 \text{K})$

Значения спонтанной поляризации (*P_s*), напряженности коэрцитивного поля (*E*₁) при комнатной температуре и напряженностей полей, при которых происходят индуцированный АСЭ–СЭ фазовый переход (*E*₁) и обратный переход СЭ–АСЭ (*E*₂)

Puc. 3. Температурные зависимости диэлектрической проницаемости ε(T) и тангенса угла диэлектрических потерь tg δ(T) для образцов Pb_{0.99}[(Zr_{1-x}Sn_x)_{1-y}Ti_y]_{0.98}Nb_{0.02}O₃ (серия I) с y = 0.09 (5), полученных при $T_2 = 1300^{\circ}$ C и образцов с y = 0.085 (1), 0.09 (2), 0.095 (3) (частота измерительного поля f = 100 kHz), y = 0.095 (f = 1 kHz) (4), полученных при $T_2 = 1380^{\circ}$ C.

Puc. 4. Температурные зависимости диэлектрической проницаемости ε(T) и tg $\delta(T)$ для образцов Pb_{0.99}[(Zr_{1-x}Sn_x)_{1-y}Ti_y]_{0.98}Nb_{0.02}O₃ (серия II) с y = 0.06 (1), 0.08 (2), 0.09 (3) (частота измерительного поля f = 100 kHz), y = 0.06 (f = 1 kHz) (4), полученных при $T_2 = 1380$ °C.

образца описывается следующей фазовой траекторией: $a(AC\Im) \rightarrow b(AC\Im) \rightarrow c(C\Im) \rightarrow b'(C\Im) \rightarrow a(AC\Im)$. В заштрихованной области (I) образцы, претерпевшие при приложении поля фазовый переход в СЭ состояние, сохраняют это состояние и при последующем уменьшении напряженности поля до значения E_2 .

Температурные зависимости диэлектрической проницаемости $\varepsilon(T)$ для всех образцов имеют максимум при T_m (рис. 3, 4). Температура этого максимума на 10–30 K (I) и на 20–40 K (II) превышает температуру исчезновения двойных петель диэлектрического гистерезиса. Для образцов II положение максимума T_m смещается от 446 (y = 0.06) до 420 K (y = 0.09), а для образцов I — от 446 (y = 0.06) до 416 K (y = 0.12).

Для всех образцов обеих серий вблизи максимума ε наблюдается некое плато на зависимости $\varepsilon(T)$, ширина которого уменьшается при увеличении концентрации титана. Максимальное значение ε_m увеличивается при увеличении у.

Фазовый переход из АСЭ в СЭ фазу сопровождается низкотемпературными аномалиями типа ступеньки на зависимостях tg $\delta(T)$, lg $\sigma(T)$, $1/\varepsilon(T)$, размытие которых увеличивается при уменьшении у. Для низкотемпературных аномалий характерен гистерезис, уменьшающийся при увеличении у.

Для образцов I, полученных при $T_2 = 1300^{\circ}$ C, степень размытия наблюдаемых аномалий больше, а значение ε_m меньше, чем для образцов, полученных при $T_2 = 1380^{\circ}$ C.

Рис. 5. Фазовая диаграмма состав-температура для образцов $Pb_{0.99}[(Zr_{1-x}Sn_x)_{1-y}Ti_y]_{0.98}Nb_{0.02}O_3$: a - x = 0.5 (серия I), b - x = 0.4 (серия II).

Температуры, соответствующие наблюдаемым аномалиям диэлектрических характеристик, не зависят от частоты электрического поля, при которой производилось измерение.

Обсуждение результатов

По результатам наблюдения петель диэлектрического гистерезиса, измерений температурных зависимостей диэлектрических характеристик и интенсивности сигнала ГВГ построена диаграмма концентрация-температура (рис. 5). Видно, что четкая граница между СЭ и АСЭ состояниями в изученных составах отсутствует, наблюдается промежуточная область сосуществования этих фаз. При этом для твердых растворов I данная область существенно шире, чем для твердых растворов II. В промежуточной области твердые растворы представляют собой смесь АСЭ и СЭ фаз, что подтверждается видом петель гистерезиса: при повышении напряженности Е ненасыщенная сегнетоэлектрическая петля искажается, трансформируясь в двойную петлю с широкой перетяжкой. Это подтверждается и изменением характера размытия диэлектрических аномалий при СЭ-АСЭ фазовом переходе. При удалении по концентрации от морфотропной границы между тетрагональной АСЭ и ромбоэдрической СЭ фазами наблюдается сужение двухфазной области (как по данным диэлектрических измерений, так и по наблюдению петель гистерезиса).

Как уже отмечалось, температура максимума $\varepsilon(T)T_m$ выше, чем температура исчезновения двойной петли диэлектрического гистерезиса, значение которой совпадает с положением максимума $d\varepsilon/dT$. Похожее поведение $\varepsilon(T)$ наблюдали и другие исследователи в твердых растворах $Pb_{0.99}[(Zr_{1-x}Sn_x)_{1-y}Ti_y]_{0.98}Nb_{0.02}O_3, [12],$ (Pb,Sr)ZrO₃ [13], Pb(Zn,Sn)O₃ [14,15]. Эта особенность может быть объяснена наличием области сосуществования АСЭ и ПЭ фаз. В [12] такое поведение связывают с наличием промежуточной кубической фазы с мультиплетной элементарной ячейкой. В [13] на основании данных об аномалиях на температурной зависимости относительного удлинения подобное размытие максимума $\varepsilon(T)$ связывают с наличием между тетрагональной АСЭ и ПЭ промежуточных неполярных фаз, природа которых до конца не выяснена. В [16] предлагают считать переходы между этими фазами не переходами между двумя АСЭ фазами, а переходами типа "смятия". Данные по петлям гистерезиса, снижение Т_т и сужение этой промежуточной области в изученных нами системах при увеличении содержания титана согласуются с таким рассмотрением.

Таким образом, в образцах изученных твердых растворах путем приложения относительно небольших полей $E \propto 8-14 \, {\rm kV/cm}$ можно вызвать индуцированный фазовый переход из АСЭ в СЭ состояние, идентифицируемый по наблюдению двойных петель диэлектрического гистерезиса. В обеих сериях повышение концентрации титана приводит к стабилизации СЭ состояния. С дру-

гой стороны, при увеличении содержания олова, как и ожидалось, область сосуществования СЭ и АСЭ фаз расширяется. Более того, АСЭ состояние становится более стабильным. Так, в образцах с одинаковым содержанием титана для индуцирования АСЭ–СЭ фазового перехода необходимо прикладывать поля большей напряженности для образцов с большей концентрацией олова.

Полученные данные позволяют сделать вывод о перспективности изучения ЭКЭ в образцах серии I с y = 0.085 - 0.095 и серии II с y = 0.06 - 0.08.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 98-03-32848).

Список литературы

- [1] Иона Ф., Ширане Д. Сегнетоэлектрические кристаллы. Пер. с англ. / Под ред. Л.А. Шувалова. М.: Мир, 1970. 352 с.
- [2] Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнетои антисегнетоэлектрики семейства титаната бария. М.: Химия, 1985. 202 с.
- [3] Jaffe B., Roth R.S., Marzullo S. // J. Res. Bur. Stand. 1955. Vol. 55. P. 239.
- [4] Jaffe B. Proc. // Inst. Radio Engrs. 1961. Vol. 49. P. 1264.
- [5] Pan W., Zhang Q., Bhalla A., Cross L.E. // J. Amer. Ceam. Soc. 1989. Vol. 72. N 4. P. 571.
- [6] Sinyavsky Y.V., Brodyansky V.M. // Ferroelectrics. 1992. Vol. 32. P. 321.
- [7] Биркс Е.Х. Фазовые переходы и некоторые сопутствующие им явления в сегнетоэлектриках. Рига, 1994. С. 171– 182.
- [8] Tuutle B.A., Payne D.A. // Ferroelectrics. 1981. Vol. 37. P. 603–610.
- [9] Thacher P.D. // Journ. Appl. Phys. 1968. Vol. 39. N 4. P. 1996.
- [10] Gerson R., Jaffe H. // J. Phys. Chem. Solids. 1963. Vol. 24. P. 979.
- [11] Аксенов С.Е., Ловкова Е.В., Политова Е.Д., Стефанович С.Ю. // Труды III Междунар. конф. "Кристаллы: рост, свойства, реальная структура, применение". Александров: ВНИИСИМС, 1995. Т. 2. С. 364.
- [12] Berlincourt D., Krueger H.H.A., Jaffe B. // J. Phys. Chem. Solids. 1964. Vol. 25. P. 659.
- [13] Крайник Н.Н. // ЖТФ. 1958. Т. 28. Вып. 1. С. 525.
- [14] Смоленский Г.А., Аграновская А.И., Калинина А.М., Федотова Т.М. // ЖТФ. 1955. Т. 25. С. 2134.
- [15] Веневцев Ю.Н., Жданов Г.С. // Изв. АН СССР. Сер. физ. 1957. Т. 21. № 3. С. 411.
- [16] Смоленский Г.А., Боков В.А., Исупов В.А. и др. // Сегнетоэлектрики и антисегнетоэлектрики. Л.: Наука. 1971. 377 с.