Спектр поглощения тонких пленок K₂Cdl₄

© О.Н. Юнакова, В.К. Милославский, Е.Н. Коваленко*

Харьковский национальный университет, 61077 Харьков, Украина * Харьковский национальный университет радиоэлектроники, 61166 Харьков, Украина

E-mail: Vladimir.K.Miloslavsky@univer.kharkov.ua

(Поступила в Редакцию в окончательном виде 7 июля 2004 г.)

Исследован спектр поглощения тонких пленок нового соединения K₂CdI₄. Установлено, что соединение относится к прямозонным диэлектрикам, низкочастотные электронные и экситонные возбуждения в нем локализованы в CdI_4^{2-} -структурных элементах кристаллической решетки. Выявлено, что в соединениях M_2CdI_4 (M = K, Rb, Cs) с увеличением ионного радиуса щелочного металла ширина запрещенной зоны E_g увеличивается, а величина спин-орбитального расщепления верха валентной зоны уменьшается.

1. Введение

Согласно термографическим исследованиям [1], в системе KI–CdI₂ образуется соединение K_4 CdI₆ с низкой температурой плавления (210°С), в то время как в изоморфных системах RbI, CsI-CdI₂ образуется соединение M_2 CdI₄ (M =Rb, Cs) с близкими температурами плавления (216°С в Rb₂CdI₄ и 210°С в Cs₂CdI₄ [1]). Рентгеноструктурные исследования сплавленных порошков стехиометрического состава K₄CdI₆ [2] не подтверждают образование такого соединения в системе KI-CdI₂. По-видимому, в системе KI-CdI₂, так же как и в RbI, CsI-CdI₂, образуется соединение K₂CdI₄. Исходя из такого предположения, мы синтезировали новое соединение K₂CdI₄. Исследование спектра поглощения этого соединения представляет интерес как с точки зрения изучения экситонов в соединениях M_2 CdI₄, так и возможных сегнетоэластических свойств.

В настоящей работе приведены результаты исследования спектра поглощения соединения K₂CdI₄ в области спектра 2–6 eV при 90 и 290 K.

2. Эксперимент

Тонкие пленки K_2CdI_4 приготавливались вакуумным испарением по методике [3,4], используемой для синтеза пленок Rb_2CdI_4 и Cs_2CdI_4 . Смесь чистых порошков KI и CdI_2 предполагаемого стехиометрического состава предварительно расплавлялась в вакууме под экраном. Жидкая фракция расплава выпаривалась на экран, а оставшийся кристаллический осадок при более высокой температуре испарялся на кварцевые подложки, нагретые до 100°C. Образец отжигался в течение часа при температуре 120°C.

Полученные пленки соединения гигроскопичны, и при вынесении их из вакуума и охлаждения до комнатной температуры в них появляется сильное светорассеяние. Во избежание этого образцы нагретыми переносились в вакуумный криостат, медный палец которого предварительно нагревался до 70°С. После откачки криостата и заливки азота пленки остаются прозрачными.

Толщина пленок определялась по спектрам пропускания в области прозрачности с учетом интерференции света в пленке по методике [5]. Спектры поглощения измерялись на спектрофотометре СФ-46 в области спектра 2–6 eV. Параметры длинноволновых экситонных полос (положение E_m , полуширина Г и значение мнимой части диэлектрической проницаемости в максимуме полосы ε_{2m}) определялись по методике [6] путем аппроксимации экспериментальной зависимости симметричным двухосцилляторным смешанным контуром, представляющим собой линейную комбинацию лоренцова и гауссова контуров.

3. Спектр поглощения тонких пленок K₂Cdl₄

В спектре поглощения исследуемых тонких пленок наблюдается интенсивная длинноволновая A_0 -полоса при 4.612 eV и более слабая A_1 -полоса при 4.97 eV, в более коротковолновой области расположены полосы C_1 (5.46 eV) и C_2 (5.82 eV) (см. рисунок). С ростом температуры A-полосы сдвигаются в длинноволновую область спектра, уширяются и ослабляются, что указывает на их связь с экситонными возбуждениями. Более широкие C-полосы менее чувствительны к температуре, мы связываем их с межзонным поглощением.

Спектральное положение A_0 -полосы (4.612 eV) в координатах $E_m(x)$, где x — молярная концентрация в системе (2KI)_{1-x} (Cd_{0.5}I)_x, находится на прямой линии, соединяющей E_m экситонного пика в KI и X₁-пика в CdI₂ при x = 2/3, что свидетельствует о принадлежности полосы соединению K₂CdI₄ (вставка на рисунке). Возможное соединению K₂CdI₄ (вставка на рисунке). Возможное соединение K₄CdI₆ (x = 0.5) имело бы длинноволновый пик при 4.88 eV. О принадлежности спектра соединению K₂CdI₄ свидетельствует также близость положения A_0 -полосы и соответствующих полос в Rb₂CdI₄ и Cs₂CdI₄ (см. таблицу).

Спектр поглощения тонких пленок: $I - \text{CdI}_2$ (T = 90 K, t = 60 nm), $2 - \text{K}_2\text{CdI}_4$ (T = 290 K, t = 145 nm), $3 - \text{K}_2\text{CdI}_4$ (T = 90 K, t = 145 nm), 4 - KI (T = 90 K, t = 150 nm). На врезке — зависимость E_m от молярной концентрации x в системе (2KI)_{1-x} ($\text{Cd}_{0.5}$ I)_x.

Резкий длинноволновый край A_0 -полосы и ее большая интенсивность указывают на принадлежность K_2CdI_4 к прямозонным диэлектрикам.

Для интерпретации основных полос поглощения в спектре тонких пленок K_2CdI_4 целесообразно сравнить его со спектрами исходных бинарных компонент CdI₂ и KI (см. рисунок) и изоструктурных соединений Rb₂CdI₄ и Cs₂CdI₄ [3,4].

Край поглощения в CdI₂ формируется непрямыми переходами с шириной запрещенной зоны $E_g = 3.437$ eV. Длинноволновые полосы X_1 и X_2 соответствуют прямым переходам между валентной зоной, формируемой 5*p*-состояниями I и зоной проводимости, образованной 4*s*-состояниями Cd [7]. Расстояние между полосами X_1 и X_2 ($\Delta E = 0.59 \text{ eV}$) определяется спин-орбитальным расщеплением верхней валентной зоны в CdI₂.

По нашим измерениям, длинноволновая *А*-полоса в KI расположена при 5.84 eV (90 K) (см. рисунок), что согласуется с данными [8].

По спектральному положению A_0 -полоса в K₂CdI₄ занимает промежуточное положение между X_1 -полосой в CdI₂ и A-полосой в KI. Линейная зависимость положения длинноволновых экситонных полос в ряду соединений KI, K₂CdI₄, CdI₂ (вставка на рисунке), согласно концепции [9], развитой для многокомпонентных соединений, свидетельствует о возбуждении экситонов во всем объеме кристалла с участием обеих подрешеток соединения. Несмотря на это, мы предполагаем локализацию экситонных возбуждений в CdI_4^{2-} -структурных элементах кристаллической решетки соединения. В пользу такой локализации свидетельствует близкое положение основных полос поглощения в спектрах K₂CdI₄, Rb₂CdI₄ и Cs₂CdI₄ (см. таблицу), а также некоторые особенности спектров поглощения этих соединений, на которых остановимся далее.

В случае локализации экситонных возбуждений в CdI_4^{2-} -структурных элементах кристаллической решетки K_2CdI_4 полосы A_0 и A_1 соответствуют прямым разрешенным переходам из верха валентной зоны, формируемой 5*p*-состояниями I в зону проводимости, образованную 4*s*-состояниями Cd, а расстояние между ними $\Delta E_A = E_{A1} - E_{A0}$, по-видимому, как и в CdI₂, определяется спин-орбитальным расщеплением верхней валентной зоны.

Как уже отмечалось выше, спектры поглощения тонких пленок M_2 CdI₄ (M = K, Rb, Cs) подобны по структуре спектра и близки по положению основных полос поглощения, однако край поглощения в ряду K₂CdI₄, Rb₂CdI₄, Cs₂CdI₄ незначительно сдвигается в коротковолновую область спектра и соответственно растет ширина запрещенной зоны E_g (см. таблицу). В K₂CdI₄ ширина запрещенной зоны E_g оценивалась по точке перегиба края поглощения после отделения полос A_0 и A_1 ; из полученного значения $E_g^1 = 5.18$ eV следует вычесть расстояние между подзонами ΔE_A , тогда $E_g = 4.82$ eV.

Коротковолновый сдвиг края поглощения и рост E_g принято объяснять большей ионностью соединения [10], однако в ряду соединений K₂CdI₄, Rb₂CdI₄, Cs₂CdI₄ ионность уменьшается, и причину коротковолнового сдвига, по-видимому, следует искать в особенностях кристаллической структуры соединений.

Структурным элементом решетки M_2 CdI₄ являются тетраэдры CdI₄²⁻, окруженные ионами щелочных металлов M^- , образующих одиннадцативершинник [11,12]. Причем длины связей щелочной металл-иод значительно больше величины d_{Cd-I} (например, в Cs₂CdI₄ $d_{Cs-I} = 3.825 - 4.499$ Å; $d_{Cd-I} = 2.76 - 2.91$ Å [12]). Параметры кристаллических решеток и объемы элементарных ячеек близки (a = 10.6, 10.7 Å, b = 8.4, 8.46 Å,

Положение основых полос поглощения, величина их расщепления и ширина запрещенной зоны

Соединение	<i>E</i> _{<i>A</i>0} , eV	E_{A1}, eV	$\Delta E_A, eV$	E_{C1}, eV	<i>E</i> _{<i>C</i>2} , eV	$\Delta E_C,$ eV	E_g, eV	$r_i, Å$
$\begin{array}{c} K_2CdI_4\\ Rb_2CdI_4\\ Cs_2CdI_4\\ CdI_2 \end{array}$	4.612 4.63 4.65 4.04	4.97 4.92 4.89 4.58	0.358 0.29 0.24 0.54	5.46 5.34 5.35	5.82 5.62 5.6	0.36 0.28 0.25	4.82 4.89 4.96	1.33(K ⁺) 1.48(Rb ⁺) 1.69(Cs ⁺)
KI	(X_1) 5.84	(X_2)	(ΔE_X)				6.33	

c = 14.9, 14.85 Å, $\Omega = 1327, 1349$ Å³ для Rb₂CdI₄ и Cs₂CdI₄ соответственно [4,11,12]). Ионный радиус щелочных металлов r_i в ряду К⁻, Rb⁻, Cs⁻ увеличивается [13] (см. таблицу), что с учетом указанного выше приводит, по-видимому, к увеличению сжатия тетраэдров CdI_4^{2-} в M_2CdI_4 со стороны щелочного окружения и соответственно к коротковолновому сдвигу края поглощения. Согласно [14], гидростатическое сжатие тонких пленок CdI₂ приводит к коротковолновому сдвигу края поглощения, причем значения коэффициентов сдвига для полос X₁ и X₂ различны, с ростом давления расстояние между полосами X₁ и X₂ уменьшается. В ряду M_2 CdI₄ (M = K, Rb, Cs) расстояние между полосами A_0 и А₁ уменьшается (см. таблицу), что качественно согласуется с результатами [14] в случае локализации экситонных возбуждений в CdI₄²⁻-тетраэдрах и подтверждает предположение, что расщепление A-полосы в M_2 CdI₄, как и в CdI₂, обусловлено спин-орбитальным (CO) расщеплением верхней валентной зоны. В пользу такого предположения свидетельствуют также близкие значения величины расщепления полос $C \ \Delta E_C = E_{C2} - E_{C1}$ (см. таблицу).

4. Заключение

На основании изложенного можно сделать вывод, что экситонные и электронные возбуждения в K_2CdI_4 локализованы в CdI_4^{2-} -структурных элементах кристаллической решетки. Край поглощения в K_2CdI_4 формируется прямыми разрешенными переходами из верха валентной зоны, сформированной 5*p*-состояниями *I*, в зону проводимости, образованную 4*s*-состояниями Cd, расщепление полос *A* и *C* обусловлено CO расщеплением верха валентной зоны.

Меньшее значение величины СО расщепления в M_2 CdI₄ по сравнению с чистым CdI₂ обусловлено воздействием ионов щелочных металлов на структурные элементы кристаллической решетки CdI₄²⁻: с ростом ионного радиуса r_i увеличивается сжатие тетраэдров CdI₄²⁻ щелочно-ионным окружением, что приводит к росту ширины запрещенной зоны E_g и уменьшению величины СО расщепления верхней валентной зоны в соединениях.

Список литературы

- [1] И.Н. Беляев, Е.А. Шургинов, Н.С. Кудряшов. ЖНХ **17**, *10*, 2812 (1972).
- [2] H.P. Beck, W. Milius. Z. Anorg. Allg. Chem. 562, 102 (1988).
- [3] О.Н. Юнакова, В.К. Милославский, Е.Н. Коваленко. ФТТ 45, 887 (2003).
- [4] О.Н. Юнакова, В.К. Милославский, Е.Н. Коваленко. ФНТ 29, 922 (2003).
- [5] В.К. Милославский, А.И. Рыбалка, В.М. Шмандий. Оптика и спектроскопия **48**, *3*, 619 (1980).
- [6] В.К. Милославский, О.Н. Юнакова, Сунь Цзя-Линь. Оптика и спектроскопия 78, 3, 436 (1995).

- [7] I. Pollini, J. Thomas, R. Coehoorn, C. Haas. Phys. Rev. B 33, 8, 5747 (1986).
- [8] K. Teegarden, G. Baldini. Phys. Rev. 155, 3, 896 (1966).
- [9] Y. Onodera, Y. Toyozawa. J. Phys. Soc. Jap. 22, 3, 833 (1967).
- [10] R.S. Bauer, B.A. Huberman. Phys. Rev. B 13, 9, 3344 (1976).
- [11] K.S. Aleksandrov, S.V. Melnikova, I.N. Flerov, A.D. Vasilev, A.I. Kruglik, I.T. Kokov. Phys. Stat. Sol. (a) 105, 441 (1988).
- [12] V. Touchard, V. Louer, J.P. Auffredic, D. Louer. Rev. Chim. Miner. 24, 414 (1987).
- [13] И.Т. Гороновский, Ю.П. Назаренко, Е.Ф. Некряч. Краткий справочник по химии. Наукова думка, Киев, (1987). 829 с.
- [14] A.D. Brothesr, J.T. Pajor. Phys. Rev. B 14, 10, 4570 (1976).