01;07;08;12 Акустооптический фильтр неполяризованного электромагнитного излучения

© В.Б. Волошинов, В.Я. Молчанов, Т.М. Бабкина

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия E-mail: volosh@osc162.phys.msu.su

(Поступило в Редакцию 18 мая 1999 г. В окончательной редакции 10 ноября 1999 г.)

Представлены результаты теоретических и экспериментальных исследований перестраиваемого акустооптического фильтра, нечувствительного к поляризации падающего света. Показана принципиальная возможность создания акустооптического фильтра неполяризованного света, работающего в видимом диапазоне электромагнитных длин волн $\lambda = 480-750$ nm с высоким пространственным и временным разрешением. Число разрешимых элементов отфильтрованного изображения достигает величины 400 × 400 при спектральной полосе пропускания устройства $\Delta \lambda = 1.7$ nm. Обсуждаются результаты обработки оптических изображений, сформированных произвольно поляризованными световыми пучками. Акустооптический фильтр на кристалле TeO₂ может использоваться в оптике и спектроскопии при обработке световых пучков с произвольной поляризацией, а также при анализе оптических изображений, сформированных световыми лучами, поляризация которых может меняться со временем.

Введение

Как известно, акустооптические фильтры обеспечивают спектральную фильтрацию и оптоэлектронную обработку коллимированных и неколлимированных пучков света, а также оптических изображений [1-4]. Интерес к акустооптическим фильтрам обусловлен широкими функциональными возможностями, простотой их конструкции, узким спектральным интервалом пропускания, а также быстрой электрической перестройкой в широком диапазоне длин волн света. К сожалению, не все характеристики акустооптических фильтров удовлетворяют потребностям практики. Например, перестраиваемые фильтры, являются чувствительными к поляризации падающего света, так как для работы подобных приборов необходимо линейно поляризованное излучение [4-7]. Однако применение поляризаторов часто ведет к снижению мощности падающего света на 50% и более [8,9]. Проблема фильрации неполяризованного света может быть решена несколькими способами [8-10]. Одна из методик предусматривает использование двух приемников и дополнительной электронной обработки двух световых изображений на выходе фильтра. Очевидно, что это усложняет систему фильтрации и требует больших затрат времени.

В данной работе предложена схема работы с произвольно поляризованными оптическими сигналами, лишенная недостатков известных методов. Методика предполагает использование дополнительных пассивных оптических элементов, например призм и зеркал. В этом случае произвольно поляризованный свет, падающий на фильтр, разделяется с помощью оптических элементов на обыкновенно и необыкновенно поляризованные лучи. Эти лучи направляются в акустическую ячейку под углами, удовлятворяющими условиям Брэгга для обыкновенно (o) и необыкновенно (e) поляризованного света. На выходе фильтра наблюдается только один дифрагированный световой пучок, что чрезвычайно удобно с практической точки зрения.

Принцип работы фильтров на парателлурите

Для целей фильтрации электромагнитного излучения в перестраиваемых акустооптических фильтрах используется селективность анизотропного брэгговского рассеяния света на акустической волне [1-4]. Спектральная фильтрация оптических сигналов может быть осуществлена при использовании фильтра на кристалле парателлурита с неколлинеарной геометрией акустооптического взаимодействия [4-7]. Селекция длин волн света обеспечивается за счет брэгговского рассеяния оптического пучка на акустической волне, распространяющейся вблизи направления [110] в парателлурите в плоскокости (110). При использовании данной акустической моды достигаются высокие значения акустооптического качества M_2 кристалла [1–3] и обеспечивается эффективность дифракции, близкая к единице, при малых уровнях управляющих электрической мощности Р.

Брэгговская дифракция может рассматриваться как процесс рассеяния фотонов на фононах, происходящий с выполнением законов сохранения энергии и импульса. Для использованной схемы фильтрации векторные соотношения записываются в виде [1–3]

$$\mathbf{k}_{i}^{o} - \mathbf{K} - \Delta \mathbf{K} - \Delta \mathbf{k} = \mathbf{k}_{d}^{e},$$
$$\mathbf{k}_{i}^{e} + \mathbf{K} + \Delta \mathbf{K} + \Delta \mathbf{k} = \mathbf{k}_{d}^{o},$$
(1)

где \mathbf{k}_i и \mathbf{k}_d — волновые векторы падающего и дифрагированного света для обыкновенно и необыкновенно поляризованных лучей, **К** — волновые векторы звука, ΔK

Рис. 1. Векторная диаграмма акустооптического взаимодействия для необыкновенно поляризованного света.

и Δk — приращения акустического вектора и векторы расстройки.

В соответствии с формулой (1) вектор \mathbf{k}_d^o образуется как сумма, а вектор \mathbf{k}_d^e — как разность волновых векторов падающей световой и акустической волн. Векторная диаграмма, иллюстрирующая соотношение (1), представлена на рис. 1. На этом рисунке показана оптическая ось кристалла [001] и углы Брегга Θ_B^o и Θ_B^e . Акустичские волны распространяются в кристалле под углом α к оси [110] в плоскости акустооптического взаимодействия, как показано на рисунке.

Известны соотношения для длин волновых векторов взаимодействующих пучков $k_d = 2\pi \cdot n_0/\lambda$, $K = 2\pi \Delta f/V$, $\Delta K = 2\pi \Delta f/V$, где V — фазовая скорость звука, f и Δf — частота акустической волны и ее вариации при нарушении условий синхронизма [5]. В эксперименте использовался фильтр с направлением распространения ультразвука под углом $\alpha = 10^{\circ}$ к оси [110]. Для выбранного среза кристалла TeO₂ показатели преломления для обыкновенной и необыкновенной волн света при $\lambda = 0.63 \,\mu$ m соответственно равны $n_o = 2.26$ и $n_e = 2.41$, а фазовая скорость звука достигает величины $V = 7.08 \cdot 10^4$ m/s.

Волновое число падающего света записывается в виде $k_i^e = 2\pi \cdot n_i / \lambda$, где n_i — показатель преломления необыкновенной световой волны ($n_0 \le n_i \le n_e$). Параметр n_i для исследуемой геометрии взаимодействия равен [7]

$$n_i = \frac{n_o \cdot n_e}{\sqrt{n_o^2 \cdot \sin^2(\Theta_B^e + \alpha) + n_e^2 \cos^2(\Theta_B^e + \alpha)}}.$$
 (2)

Для света с необыкновенной поляризацией можно получить следующее выражение для зависимости акустической частоты от угла Брегга [8]:

$$f = \frac{V}{\lambda} \left(n_i \sin \Theta_B^e - \sqrt{n_o^2 - n_i^2 \cos^2 \Theta_B^e} \right).$$
(3)

Из векторной диаграммы также рассчитывается угол дифракции Θ_d° , равный

$$\Theta_d^o = \arccos\left(\frac{n_i}{n_o}\cos\Theta_B^e\right). \tag{4}$$

На основе соотношений (3) и (4) для света с длиной волны $\lambda = 0.63$ nm можно построить графики частотных зависимостей угла Брэгга $\Theta_B^e(f)$ и угла дифракции $\Theta_d^o(f)$ при необыкновенно поляризованном падающем свете. Эти зависимости показаны на рис. 2, причем кривая 1относится к падающему лучу, а кривая 2 иллюстрирует дифрагированный свет. Графики соответствуют строгому выполнению условия Брегга, когда расстройка равна нулю. Аналогично рассчитываются частотные зависимости и для обыкновенно поляризованного падающего излучения. Зависимость брэгговского угла падения имеет такой же вид, как на рис. 2, однако кривая 1 будет соответствовать дифрагированному свету, а кривая 2 падающему лучу.

Дифракция света с произвольной поляризацией

Из рис. 2 и результатов анализа можно сделать вывод, что на частоте ультразвука $f_1 = 120.3$ MHz частотные зависимости углов падения обыкновенно и необыкновенно поляризованного света пересекаются. Это происходит при угле падения света $\Theta_1 = 13^\circ$. Если свет распространяется под этим углом к акустическому волновому фрон-

Рис. 2. Частотная зависимость брэгговского угла и угла дифракции для необыкновенно поляризованного падающего света.

Журнал технической физики, 2000, том 70, вып. 9

ту, то брэгговское условие синхронизма автоматически выполняется и для необыкновенно, и для обыкновенно поляризованного света [8,9]. Акустооптическая ячейка при этом становится нечувствительной к поляризации светового излучения, так как световые лучи с каждой из двух поляризаций одновременно удовлетворяют условию Бреэгга и взаимодействуют с ультразвуком с максимальной эффективностью [8-10]. Исследованный режим дифракции используется в извесном акустооптическом фильтре для анализа произвольно поляризованных световых пучков [8]. Особенностью работы такого фильтра являются два дифрагированных световых луча, распространяющихся на выходе акустооптической ячейки симметрично прошедшему свету. Из рис. 2 видно, что угол дифракции для обыкновенно поляризованного дифрагированного света на частоте звука $f = f_1$ равен $\Theta_d^o = 10.4^\circ$, в то время как необыкновенно поляризованные дифрагированные световые лучи распространяются под углом $\Theta_d^e = 15.6^\circ$ к акустическому волновому фронту.

На частоте акустической волны $f = f_1$ может быть реализован еще один интересный с практической точки зрения режим дифракции [9]. Именно этот режим был использован в настоящей работе. Из рис. 2 непосредственно следует, что условие Брэгга при $f = f_1$ выполняется для необыкновенно поляризованного падающего света, если угол падения выбран равным $\Theta_B^e = 15.6^\circ$. Очевидно, что угол дифракции при этом равен $\Theta_d^o = \Theta_1 = 13^\circ$. С другой стороны, для обыкновенно поляризованных падающих лучей условие Брэгга выполняется на той же частоте ультразвука, если угол падения выбран равным $\Theta_B^o = 10, 4^\circ$. Угол дифракции при этом также оказывается равным $\Theta_d^e = 13^\circ$. Таким образом, углы дифракции для обыкновенно и необыкновенно поляризованных световых лучей будут строго равны между собой. Это означает, что на рис. 1 оба дифрагированных световых пучка имеют коллинеарные волновые векторы, направленные вдоль штриховой линии. Поэтому можно сделать вывод, что дифрагированные световые лучи распространяются в кристалле в одном и том же направлении [9].

Таким образом, направляя на ячейку ортогонально поляризованные световые лучи под углами соответственно $\Theta_B^o = 10.4^\circ$ и $\Theta_B^e = 15.6^\circ$, на частоте ультразвука $f_1 = 120.3$ MHz можно наблюдать одновременную дифракцию обыкновенно и необыкновенно поляризованных пучков падающего света. На выходе акустооптической ячейки в результате дифракции будут распространяться три световых луча. Два из них являются прошедшими световыми пучками нулевого порядка, а третий пучок состоит из двух дифрагированных лучей +1 и -1 порядка. Дифрагированный пучок при этом имеет произвольную поляризацию, так как является суммой дифрагированных компонент двух исходных волн, причем направление его поляризации всегда совпадает с поляризацией исходного светового луча.

Взаимодействие при нарушении условия синхронизма

Одной из важнейших характеристик акустооптической фильтрации является спектральная полоса пропускания $\Delta \lambda$ акустооптического фильтра [1]. Известно, что спектральное разрешение $R = \lambda / \Delta \lambda$ акустооптического прибора зависит от расходимости оптического пучка и ограниченности области, в которой происходит дифракция света [1-3]. При неколлинеарном акустооптическом взаимодействии эта область фактически определяется шириной акустического столба *l*, которая в свою очередь зависит от длины пьезоэлектрического преобразователя l_0 . Спектральная полоса пропускания акустооптического фильтра рассчитывается из соотношения $\Delta\lambda(\Delta f/f)$, где Δf — диапазон частот дифракции вблизи акустической частоты брэгговского синхронизма [1]. Частотный диапазон Δf может быть наиболее легко рассчитан при фиксированной длине волны света λ с помощью векторных построений на рис. 1, учитывающих векторы расстройки $\Delta \mathbf{k}$ [8].

Расстройки $\Delta \mathbf{k}$ при акустооптическом взаимодействии, ортогональные границам акустического столба, связаны с шириной акустического столба l условием $\Delta k \leq 0.8\pi/l$ [1]. Ширина акустического столба зависит от угла ψ между векторами фазовой и групповой скорости звука $l = l_0 \cos \psi$. При ориентации волнового вектора звука вдоль $\alpha = 10^\circ$, угол сноса акустической энергии равен $\psi = 57^\circ$ [7]. Очевидно, что ограничение на величину вектора расстройки принимает вид

$$\Delta k \le 0.8\pi/l_0 \cos\psi. \tag{5}$$

Из векторных диаграмм на рис. 1 находится связь между длиной вектора $\Delta \mathbf{k}$ и вектором $\Delta \mathbf{K}$. Таким образом, векторное построение и соотношение (5) дают возможность получить выражение для полосы акустических частот

$$\Delta f \le \frac{0.8V}{l_0 \cos \psi} \frac{n_i V \cos(\psi - \Theta_B^e) - \lambda f \sin \psi}{n_i V \sin \Theta_B^e - \lambda f}.$$
 (6)

В приближении малости двулучепреломления материала, а также с учетом условия $\Delta K \gg K$ из соотношения (6) получается выражение для акустического частотного диапазона Δf , а также для полосы пропускания фильтра

$$\Delta \lambda \le \frac{0.8\lambda^2}{l_0 \cos \psi \Delta n \sin^2(\Theta_B^e + \alpha)},\tag{7}$$

где $\Delta n = n_e - n_o$.

Оценки по формуле (7) показывают, что для выбранной геометрии взаимодействия и длины преобразователя $l_0 = 1.2$ ст полоса пропускания фильтра составляет величину $\Delta \lambda = 1.7$ nm.

Следует отметить, что исследуемый режим акустооптического взаимодействия является близким к случаю широкоапертурной дифракции [4]. Поэтому выбранная геометрия взаимодейсвия не только гарантирует получение узких полос пропускания, но и обеспечивает достаточно широкие угловые апертуры при фильтрации световых лучей. В принципе это позволяет без потерь оптической мощности обрабатывать световые пучки, формирующие изображения. Однако главным достоинством исследованного режима взаимодействия является его нечувствительность к поляризации падающего света.

Экспериментальное исследование дифракции

Акустооптическая ячейка, использованная для фильтрации оптических изображений, была выполнена на основе монокристалла парателлурита. Очевидно, что для данных целей может быть использован любой двулучепреломляющий материал, если в нем реализуется интересующий режим дифракции. В настоящей работе выбор кристалла парателлурита был обусловлен высоким значением акустооптического качества материала [1–4].

Акустические волны в парателлурите генерировались пьезоэлектрическим преобразователем из ниобата лития *x*-среза, имеющим длину $l_0 = 1.5 \,\mathrm{cm}$ и ширину $d = 0.5 \,\mathrm{cm}$. Схема экспериментальной установки показана на рис. 3. При изучении акустооптической ячейки в качестве источника света использовался гелий-неоновый лазер с длиной волны $\lambda = 0.63$ mkm, а при обработке некогерентных изображений применялась лампа накаливания 1 со сплошным спектром оптических частот. Пучок света от лазера или лампы расширялся при помощи оптической системы 2 и направлялся на транспарант 3. Объектив 4 формировал изображение транспаранта на экране 5 или окне матричного приемника изображений. На пути оптического пучка был установлен поляризационный делитель световых лучей 6, с помощью которого обыкновенно поляризованные световоые лучи направлялись непосредственно на акустооптическую ячейку 7, а необыкновенно поляризованные компоненты падающего света попадали на зеркало 8, а затем на кристалл. Зеркало и ячейка фильтра юстировались таким образом, чтобы для каждого из двух падающих ортогонально поляризованных оптических пучков автоматически выполнялось условие брэгговского синхронизма на одной и той же частоте ультразвука.

Рис. 3. Блок-схема экспериментальной установки.

При освещении транспаранта светом и подаче на ячейку электрического сигнала с частотой $f_1 = 120.3$ MHz от высокочастотного генератора на выходе акустооптической ячейки наблюдались два дифрагированных луча света, распространяющихся в одной и том же направлении, как показано на рис. 3. Поляризация этого света совпадала с исходной, что доказывало способность фильтра обеспечивать обработку произвольно поляризованных световых пучков.

Предватительные экспериментальные исследования, проведенные с помощью источника когерентного света на длине волны $\lambda = 0.63 \,\mu \mathrm{m}$, показали, что при управляющей ВЧ мощности P = 1.2 W эффективность дифракции достигала величины T = 90%. В экспериментах определялась зависимость брэгговских углов падения от акустической частоты для обыкновенно и необыкновенно поляризованного падающего света. Экспериментальные точки, показанные на рис. 2, хорошо согласуются с данными расчетов. Таким образом, эксперимент подтвердил, что в ячейке реализовалась широкоапертурная геометрия акустооптического взаимодействия, причем выбранный срез кристалла обеспечивал работу с произвольно поляризованными световыми пучками. С помощью лазера по уровню ослабления эффективности дифракции на 3 dB была измерена ширина полосы частот дифракции Δf . Эта полоса оказалась равной $\Delta f = 320$ Hz, что на акустической частоте f = 120.3 MHz соответствовало полосе пропускания фильтра $\Delta \lambda = 1.7$ nm.

Акустооптическая обработка изображений в неполяризованном свете

При обработке оптических пучков в некогерентном свете в качестве транспаранта 3 использовалась фотопленка с записанным на ней изображением. Объектив, формирующий оптическое изображение, имел фокусное расстояние F = 7.5 ст. Если угловая расходимость света была меньше 6°, то прошедший и дифрагированный световые пучки на выходе фильтра не перекрывались. При этом матричный приемник на выходе фильтра регистрировал только лишь отфильтрованные световые лучи.

На частоте ультразвука $f_1 = 120$ MHz на экране можно было наблюдать отфильтрованное оптическое изображение, сформированное оптическими пучками в красном диапазоне длин волн света. Вариации акустической частоты приводили к изменению цвета обработанного изображения. Например, оптические пучки, соответствующие зеленому свету, наблюдались на частотах ультразвука f = 150 MHz, а при f = 200 MHz в отфильтрованной картине преобладали в основном лучи фиолетового цвета. Таким образом, при плавной перестройке акустической частоты в пределах f = 100-200 MHz цвет изображения на экране непрерывно менялся от красного до фиолетового.

Известно, что максимальное число разрешимых элементов N оптического изображения зависит от угловой

Рис. 4. Фрагмент отфильтрованного оптического изображения.

 $\Delta \Theta$ и линейной *a* апертуры устройства фильтрации, а также от значения длины волны света в центре диапазона пропускания [11–14]

$$N \le a\Delta\Theta/\lambda. \tag{8}$$

Следует отметить, что формула (8) справедлива для когерентного освещения транспаранта. Расчет по этой формуле показывает, что для исследуемого фильтра с угловой и линейной апертурой $\Delta \Theta = 6^{\circ}$ и a = 0.8 ст число разрешимых элементов на длине волны света $\lambda = 633$ nm будет равно $N \leq 1250$. С другой стороны, в случае некогерентного освещения максимальное число разрешимых элементов убывает с ростом спектральной полосы пропускания фильтра $\Delta\lambda$ [10,13]. При известном значении полосы пропускания устройства фильтрации можно рассчитать угловой диапазон световых лучей, формирующих один элемент изображения,

$$\Delta \varphi \approx \frac{(n_e - n_0) \Delta \lambda}{\lambda} \\ \times \sqrt{\sin^4(\Theta_B^e + \alpha) + \sin^2 2(\Theta_B^e + \alpha)}.$$
(9)

Оказалось, что для анализируемого варианта акустооптического взаимодействия значение углового диапазона составляет величину $\Delta \varphi = 3 \cdot 10^{-4}$. Поэтому реальное число разрешимых элементов отфильтрованного изображения на выходе акустооптического фильтра не превышает значения $N \leq \Delta \varphi = 330$, т.е. в несколько раз меньше, чем в случае когерентного освещения. Несмотря на это, с помощью исследованного устройства фильтрации можно получать оптические изображения исследуемых объектов с достаточно хорошим качеством.

На рис. 4 представлено изображение, полученное с помощью разработанного акустооптического фильтра. Качество отфильтрованного изображения следует признать удовлетворительным. Очевидно, что вид картины в значительной степени определялся спектральной полосой пропускания акустооптического фильтра. Поэтому для акустооптической фильтрации изображений целесообразно применять фильтры с узкой полосой пропускания $\Delta\lambda$. Именно при высоком спектральном разрешении фильтра данный метод обработки изображений в реальном масштабе времени является наиболее привлекательным для практического использования.

Выводы

В работе проведено исследование особого режима акустооптического взаимодействия в кристалле парателлурита, обеспечивающего фильтрацию произвольно поляризованного светового пучка. Благодаря применению дополнительных оптических элементов и особой схемы распространения световых пучков в кристалле обеспечено одновременное выполнение условий Брэгга для обыкновенно и необыкновенно поляризованных световых лучей. Это позволило осуществлять фильтрацию произвольно поляризованного светового пучка, формирующего оптическое изображение. Спектральное разрешение в видимом световом диапазоне *R* > 300 оказалось достаточно высоким для получения изображения хорошего качества. По сравнению с известными методами данная методика имеет преимущество, заключающееся в том, что на выходе устройства фильтрации наблюдается единственный дифрагированный световой пучок. Поэтому для регистрации отфильтрованного изображения достаточно иметь лишь одно приемное устройство. Это значительно упрощает как систему фильтрации в целом, так и дальнейшую работу с отфильтрованными оптическими изображениями.

Список литературы

- [1] Балакший В.И., Парыгин В.Н., Чирков Л.Е. Физические основы акустооптики. М.: Радио и связь, 1985. 279 с.
- [2] Korpel A. // Acousto-optics. New York: Marcel Dekker, 1988.296 p.
- [3] Xu J., Stroud R. // Acousto-optics Devices. New York: Wiley, 1992. 498 p.
- [4] Chang I. // Tunable Acousto-optics Filters. SPIE Proc. 1976. Vol. 90. P. 12–22.
- [5] Волошинов В.Б., Миронов О.В. // Опт. и спектр. 1990.
 Т. 68. Вып. 2. С. 452–457.
- [6] Suhre D., Gottlieb V., Taylor L. et al. // Opt. Eng. 1992. Vol. 31. N 10. P. 2118–2121.
- [7] Voloshinov V. // Ultrasonics. 1993. Vol. 31. N 10. P. 333–338.

- [8] Voloshinov V., Mochanov V., Mosquera J. // Opt. and Laser Tech. 1996. Vol. 28. N 2. P. 119–127.
- [9] Voloshinov V. // Application of Acousto-optic Interaction for Filtration of Arbitary Polarized Radiation Proc. I ARL Acousto-optic Tunable Filter Workshop. ARL-SR-54. MD. USA, 1997. P. 55–63.
- [10] Denes L., Kaminsky B., Gottlieb M. et al. // Factors Affecting AOTF Image Quality. Proc. I ARL Acousto-optic Tunable Filter Workshop. ARL-SR-54. MD. USA, 1997. P. 179–188.
- [11] Балакин Л.В., Балакший В.И., Волошинов В.Б. и др. // ЖТФ. 1992. Т. 61. Вып. 10. С. 100–104.
- [12] Беликов И.Б., Волошинов В.Б., Магдич Л.Н. и др. // Письма в ЖТФ. 1984. Т. 10. Вып. 20. С. 1225–1229.
- [13] Goutzoulis A., Pape D. // Desing and Fabrication of Acoustooptic Devices. New York: Marcel Dekker, 1994. 384 p.
- [14] Suhre D. and Villa E. // Appl. Opt. 1998. Vol. 37. N 12. P. 2340–2345.