01;05 Адиабатическое сжатие вещества оболочкой

© В.В. Прут

Российский научный центр "Курчатовский институт", 123182 Москва, Россия E-mail: prut@wowa.net.kiae.ru

(Поступило в Редакцию 4 августа 1999 г.)

Решена задача сферического сжатия конденсированного вещества оболочкой в приближении несжимаемой среды. Величины на внутренней границе оболочки определяются решением автомодельной задачи. Установлены асимптотические зависимости скорости и кинетической энергии оболочки при вхождении в коллапс.

Рассматривается сжатие сферической оболочкой вещества в приближении, что сжимаемость вещества оболочки значительно меньше сжимаемости основного вещества. Такие задачи представляют интерес при создании и метрологии высоких плотностей энергии, в частности при сжатии мишеней в инерциальном термоядерном синтезе. Упростим задачу, полагая оболочку несжимаемой $d\rho/dt = 0$. Тогда уравнение движения оболочки приводится к обыкновенному дифференциальному уравнению

$$\rho_h \left(2r_1 u_1^2 + r_1^2 \frac{\partial u_1}{\partial t} \right) \left(\frac{1}{r_1} - \frac{1}{r_2} \right) + \frac{1}{2} (u_2^2 - u_1^2) = -p_2 + p_1;$$

$$r_1^2 u_1 = r_2^2 u_2; \quad \frac{4\pi}{2} (r_2^3 - r_1^3) = V_h,$$

где ρ_h — плотность оболочки, V_h — ее начальный объем, r — радиусы, u — скорости, p — давление на границах оболочки, индексы 1 и 2 относятся ко внутренней и внешней границам соответственно, все величины обезразмерены относительно основного вещества.

Величины на внутренней границе определяются решением автомодельной задачи, уравнения для которой выводятся при постоянной энтропии из уравнений сохранения массы и импульса. Автомодельная переменная представима в виде $\xi = t/r$; автомодельные функции обозначены заглавными буквами $U = u\xi$, $C = c\xi$, где u — массовая скорость, c — адиабатическая скорость звука. Время изменяется вспять от начального t = 1до конечного в коллапсе t = 0. Тогда автомодельные уравнения сохранения массы и импульса, приведенные к независимой переменной C,

$$\partial \ln U / \partial \ln C = ((1-U)^2 - \nu C^2) / H,$$

 $\partial \ln \xi / \partial \ln C = ((1-U) - C^2) / H,$

где $H = (1 - U)(1 - \eta U) - C^2$; $\eta = (\nu - 1)(\gamma - 1)/2 + 1$; $\nu = 1, 2, 3$ для плоской, цилиндрической и сферической геометрии пространства; $\gamma = \gamma(V)$ определяется уравнением состояния; ускорение определяется как $\partial u_1/\partial t = (dU/dC - U\partial \ln \xi/\partial C)/(\xi dt/dC).$

Если $\gamma = \text{const}$, автомодельные уравнения расщепляются: сначала решается первое уравнение, а затем квадратурой находится ξ . В общем случае $\gamma \neq \text{const}$ необходимо их совместное решение. Автомодельная задача определяет такую траекторию поршня, при которой вся масса изэнтропически сжимается в точку осуществляется так назывемый коллапс. Автомодельные режимы сжатия конечной массы плазмы поршнем с уравнением состояния идеального газа (плазмы) $p = p_0 \rho^{\gamma}$ рассматривались, в частности, в [1–12]. Здесь предложено реальное уравнение состояния, для которого при удельном объеме $V \rightarrow 0$ термодинамические функции определяются свойствами идеального вырожденного нерелятивистского электронного газа, а при нормальной плотности — двумя экспериментальными параметрами: модулем объемного сжатия $B = -V(\partial p/\partial V)_s$ и показателем $\gamma = -(\partial \ln B/\partial \ln V)_s$. Холодное давление определено в виде

$$p = p_0 \left(e^{-aV^{lpha}} / V^{5/3} - e^{-a} \right),$$

где $p_0 = (2/5)c_F(Z/V_0)^{5/3}$, Z — атомный номер; постоянная $c_F = (3\pi^2)^{2/3}\hbar^2/2m_e$ входит в энергию Ферми как $\varepsilon_F = c_F n_e^{2/3}$.

Обозначения общепринятые. Удельный объем V обезразмерен относительно V_0 ; безразмерная плотность $\rho = 1/V$; p и B обезразмериваются относительно B_0 , так что при V = 1 безразмерная скорость звука c = 1.

Для вычисления a и α использовались значения B_0 и γ_0 , полученные из ударноволновых и статических измерений. В ударноволновых экспериментах B_0 и γ_0 определяются зависимостью скорости ударной волны от массовой $D \approx c_0 + D_1 \cdot u$; при V = 1 $\gamma = 4D_1 - 1$. Диапазон B_0 — от ~ 1 kbar (для водорода и его изотопов, гелия) до нескольких мегабар; $3 \leq \gamma \leq 7$. Вычисления a и α во всем диапазоне B_0 показали, что интерполяционная формула для p(V) хорошо реализуема. На рис. 1 представлены безразмерные зависимости модуля B и показателя γ для водорода. Переход от начального γ к конечному происходит при сжатии $\rho \cong 10$. Энергия (на единицу массы) определяется из соотношения $p = -(\partial e/\partial V)_z$ с нормировкой e(1) = 0. При $V \ll 1$ для безразмерной скорости звука: $c^2 = c_{\infty}^2 \rho^{\gamma-1}$.

Искомая интегральная кривая должна начаться и закончиться на плоскости (C, U) в особых точках $N = (1, 0), S = (C_s, U_s)$. Особая точка S — седло,

Рис. 1. Зависимости параметра γ и модуля объемного сжатия *B* от удельного объема *V*.

Рис. 2. Временные зависимости r, u, W, E для внутренней и внешней границ и кинетической энергии Ek оболочки.

а N — узел. В $S \xi = 0$, а в $N \xi = 1$. При $\xi = 0$ V = 0, а при $\xi = 1 V = 1$. Параметры особых точек, определяемые $\gamma(V)$, вычисляются при этих значениях V. Вдоль сепаратрисы искомая интегральная кривая U(C)выходит из седла S и входит в узел N. Параметры S, отмечаемые индексом s: $U_s = 2/(\nu(\gamma - 1) + 2)$, $C_s = \sqrt{\nu}(\gamma - 1)/(\nu(\gamma - 1) + 2)$. Для выхода из S при малых $\Delta = C - C_s$ находится аналитическая зависимость $\xi = \Omega \Delta^{\omega}$, где $\omega = (\nu - 1)k/(\eta(2U_s - 1) - 1 - k)$, k наклон сепаратрисы, Ω — варьируемый параметр, подлежащий определению из условия выполнения граничного условия в $N \xi = 1$. Траектория поршня находится из уравнения $\partial \ln t / \partial \ln \xi = 1 - U$.

Мощность определяется как $W = 4\pi r_2^2 u_2 p_2$; кинетическая энергия оболочки

$$E_{k} = 4\pi\rho_{h}\int_{r_{1}}^{r_{2}}\frac{u^{2}}{2}r^{2}dr = 2\pi\rho_{h}r_{1}^{4}u_{1}^{2}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right);$$

внутренняя энергия из-за несжимаемости $E_i = 0$.

В задаче два безразмерных параметра: ρ_h и V_h . В приведенных численных расчетах полагается: $\rho_h = 10$, $V_h = 4\pi/3$, что соответствует начальному объему основного вещества, поэтому в момент коллап-Эти величины не влияют на качеca $r_2 = 1$. ственные результаты. На рис. 2 представлены полученные зависимости. Подчеркнем некоторые особенности процесса сжатия. Вблизи коллапса $r_1 = (\zeta t)^{U_s}$, $u_1 = \zeta^{U_s} U_s t^{U_s-1}$, где $\zeta = c_{\infty} / \nu^{1/4} C_s^{(\gamma+1)/2}$. Тогда $u_2 \approx \zeta^{3U_s} U_s t^{3U_s-1} / r_2^2$ ($r_2 \approx$ const). Показатель степени $3U_s - 1 = (4 - \nu(\gamma - 1))/(\nu(\gamma - 1) + 2)$ и при $\gamma_u = 1 + 4/\nu$ изменяет знак. Это означает, что при приближении к коллапсу скорость внешней границы оболочки может увеличиваться (при $\gamma > \gamma_u$), уменьшаться или оставаться постоянной. На рис. 2 видно, как скорость и2 сначала увеличивается, а затем при $t \approx 5 \cdot 10^{-3}$ начинает уменьшаться. Вблизи коллапса $(r_1 \ll r_2) E_k = 2\pi \rho_h r_1^3 u_1^2 = 2\pi \rho_h \zeta^5 U_s^2 t^{5U_s-2}/r_2^2$. Показатель степени $5U_s - 2 = (6 - 2\nu(\gamma - 1))/(\nu(\gamma - 1) + 2)$ при $\gamma_k = 1 + 3/\nu$ также изменяет знак. При приближении

к коллапсу кинетическая энергия оболочки может увеличиваться (при $\gamma > \gamma_k$), уменьшаться или оставаться постоянной. Поскольку $\gamma_h < \gamma_n$, то существует диапазон $\gamma_k < \gamma < \gamma_u$, когда скорость внешней границы уменьшается, а кинетическая энергия увеличивается. Это объясняется перераспределением скоростей и ускоряемой массы в оболочке. Однако для физически предельных значений $\gamma = 5/3 < \gamma_k = 2$, поэтому реально всегда в коллапсе и скорость внешней границы $u_2 \rightarrow 0$, и кинетическая энергия оболочки $E_k \rightarrow 0$. На рис. 2 величина $E_2 - E_1$, обеспечиваемая разностью давлений $p_2 - p_1$ и мощностей $W_2 - W_1$, идет на увеличение кинетической энергии $E_k = E_2 - E_1$, которая при $t < 10^{-3}$ медленно уменьшается $E_k \propto t^{1/2}$. Однако, очевидно, $E_2 \rightarrow \infty$ и $W_2 \rightarrow \infty$, поскольку в коллапсе полная энергия сжимаемого вещества $E \rightarrow \infty$.

Список литературы

- [1] Станюкович К.П. Неустановившиеся движения сплошной среды. М.: Наука, 1971. 855 с.
- [2] Змитренко Н.В., Курдюмов С.П. // ПМТФ. 1977. № 1. С. 3–22.
- [3] Ануфриева М.А., Михайлов А.П. // Дифференциальные уравнения. 1983. Т. 19. № 3. С. 483–491.
- [4] Сидоров А.Ф. // ПММ. 1991. Т. 55. № 5. С. 779.
- [5] Kidder R.E. // Nuclear Fusion. 1974. Vol. 14. P. 53-60.
- [6] Basko M.M. // Nuclear Fusion. 1995. Vol. 35. N 1. P. 87-99.
- [7] Жданов С.К., Трубников Б.А. // Письма в ЖЭТФ. 1975.
 Т. 21. Вып. 6. С. 371–374.
- [8] Каждан Я.М. // ПМТФ. 1977. № 1. С. 23–30.
- [9] Забабахин И.Е., Симоненко В.А. // ПММ. 1978. Т. 42. Вып. 3. С. 573–576.
- [10] Анисимов С.И., Иногамов Н.А. // ПМТФ. 1980. № 4. С. 20–24.
- [11] *Свалов А.М. //* Изв. АН СССР. Мех. жид. и газа. 1982. № 3. С. 171–175.
- [12] Крайко А.Н., Тилляева Н.И. // ТВТ. 1998. Т. 36. №. С. 120– 128.