Вращение внутренней оболочки наночастицы C₂₀@C₈₀

© О.Е. Глухова, А.И. Жбанов, А.Г. Резков

Саратовский государственный университет им. Н.Г. Чернышевского, 410601 Саратов, Россия E-mail: GlukhovaOE@info.sgu.ru

ZhbanovAl@info.sgu.ru

(Поступила в Редакцию в окончательном виде 21 июня 2004 г.)

Работа посвящена теоретическому исследованию стабильности наночастицы $C_{20}@C_{80}$ и вращения внутренней оболочки. Использовался метод сильной связи. Обнаружено, что в свободном состоянии симметрия каркаса C_{20} описывается группой D_{3d} , а при помещении в поле фуллерена $C_{80}(I_h)$ вследствие изомеризации его симметрия повышается до I_h . Проведено сканирование по двум углам поворота поверхности полной энергии соединения $C_{20}@C_{80}$. На основе анализа рельефа поверхности и карты энергетических изолиний прогнозируются ориентационное плавление для наночастицы и существование наногироскопа, которым является C_{20} , вращающийся в поле C_{80} , при определенной взаимной ориентации и подаче энергии.

Благодарим за поддержку Российский фонд фундаментальных исследований (проект № 04-02-17484-а) и МНТЦ (проект № 1024.2).

1. Введение

Многослойные углеродные наночастицы, представляющие собой вложенные друг в друга замкнутные искривленные графитовые поверхности, начинают привлекать к себе все большее внимание [1-3]. Эти частицы отличаются разнообразием форм и имеют много названий: русские матрешки, луковичные фуллерены, многослойные фуллерены и др. По внешним очертаниям их можно разделить на шарообразные частицы, вытянутые или тубулярные фуллерены и конические. Очень сильно вытянутые тубулярные фуллерены с радиусом цилинпрической части от нескольких ангстрем до десятков нанометров [2] чаще называют углеродными нанотрубками. Частицы шарообразной формы [4-7] размером в несколько нанометров с алмазным или полым ядром при некоторых технологиях синтеза образуются в процессе отжига алмаза в вакууме [4,5]. Объектом исследования многослойные углеродные наночастицы стали в связи с прогнозируемыми уникальными наномеханическими, термодинамическими и оптическими свойствами. Интерес для наномеханики они представляют из-за возможного относительного и направленного вращения оболочек наночастицы [8]. С термодинамической точки зрения кластеры могут оказаться новым материалом, плавление которого будет сопровождаться рядом фазовых переходов с изменением взаимной ориентации оболочек [8,9]. Наночастицы с алмазным или полым ядром представляют интерес также и в астрофизическом аспекте. Возможно, входя в состав звездной пыли, они проявляют поглощательную способность при 217.5 nm в видимом ультрафиолетовом диапазоне. Поэтому оптические свойства наночастиц становятся объектом изучения [10,11].

Известные в настоящее время шарообразные частицы, синтеризуемые различными методами, по форме оболочек можно условно разделить на три группы: сферические, сфероидальные и икосаэдральные. Икосаэдральные выделены в отдельную группу, так как по внешнему виду их трудно отнести к какой-либо из первых двух групп. Икосаэдральные фуллерены, топология которых определяется только пяти- и шестиугольниками, с числом атомов более двухсот выглядят сферическими в направлении оси второго порядка и многогранными в направлении оси пятого порядка [12]. Форма поверхности этих частиц сильно отличается от сферической. Меньший среди таких частиц фуллерен С₆₀ может считаться либо сферическим, либо икосаэдральным [13]. Сферические оболочки являются изомерами икосаэдрального фуллерена, а их топология обогащена семи- и восьмичленными циклами, что и делает их поверхность очень близкой к шаровой [9,12–15]. Подобные сферические оболочки определяются симметрией D_{2h}, O_h, a наночастицы — группами C_1, D_{2h} [15]. Таким образом, к сферическим частицам относятся многослойные фуллерены с невысокой симметрией, форма которых очень близка к сфере. К сфероидальным фуллеренам можно отнести фуллерены низкой симметрии, поверхность которых заметно отличается от шаровой.

Наименее изученными остаются многослойные тубулярные фуллерены и конические наночастицы (подобие рожка с мороженым) [16]. Есть экспериментальные подтверждения, что они метастабильны и в результате отжига трансформируются в сферические [6]. Наименее стабильны из этих частиц конические [16].

Теоретические исследования сферических и икосаэдральных наночастиц проводятся по различным моделям. Используются модели сферических наночастиц, соответствующих глобальному или локальному минимуму длины связи изомера внешней икосаэдральной оболочки [9,15]; модели наночастиц, оболочки которых испытали предварительную Стоун–Вейлс изомеризацию [15]; применяется моделирование наночастиц с помощью юстировки осей пятого порядка параллельно силовым линиям магнитного поля [17]. Наиболее распространены первые две модели наночастиц.

В рамках этих моделей рассматриваются многослойные фуллерены, внешние оболочки которых описываются симметрией *I_h*, *D*_{2*h*}, *O_h* [9,12–15]. При этом фуллерены с симметрией D_{2h}, O_h , имеющие в своем каркасе не только пентагоны и гексагоны, но и гепта- и октагоны, получаются в результате Стоун-Вейлс изомеризации из икосаэдрального фуллерена. Как правило, энергия наночастицы, образованной подобными фуллеренами, соответствует глобальному или одному из локальных минимумов поверхности потенциальной энергии частицы [15]. Надо отметить, что во всех указанных работах авторы не исследуют саму потенциальную поверхность и конформации наночастиц, не указывают метрические и многие из энергетических параметров (энтальпию образования, электронное строение). В основном авторы изучают стабильность наночастиц различной симметрии. Немногочисленные работы по изучению ориентационного порядка оболочек наночастиц доказывают возможность изменения взаимной ориентации и даже вращения оболочек при подаче энергии частице, но при этом не отслеживаются изменение симметрии системы и перестройка каркаса молекул [8].

Исследуются наночастица $C_{20}@C_{80}$, геометрия и электронное строение фуллерена C_{20} в основном состоянии вне и в поле удерживающего потенциала фуллерена $C_{80}(I_h)$. Анализируются поверхность полной энергии $C_{20}@C_{80}$, конформеры наночастицы и относительное вращение C_{20} в поле C_{80} . Определены электронная структура, топология конформеров, положение C_{20} , при котором возможно его вращение наподобие гироскопа, частота вращения. Исследования проводятся с помощью метода сильной связи с оригинальной параметризацией матричных элементов гамильтониана.

Метод расчет электронной структуры углеродных нанокластеров

Метод сильной связи эффективно используется для расчета электронного и фононного спектров микрои макроскопических углеродных систем [18], в том числе кластеров (фуллеренов, нанотрубок, наноторов и т.д.) [19-21]. Этот метод не требует больших затрат ресурсов компьютера и обеспечивает результаты, достаточно хорошо согласующиеся с экспериментальными. Применяемая схема, впервые представленная в работе [18] для расчета зонной структуры алмаза и графита, позволяет формировать гамильтониан в реальном пространстве, в базисе s- и p-орбиталей внешних электронных слоев атомов углерода. Это позволяет рассчитывать геометрические параметры и электронные уровни при различных локальных изменениях в структуре углеродных соединений. Волновые функции валентных электронов различных атомов приближенно считаются непрекрывающимися.

Согласно используемой схеме, полная энергия

$$E = E_{\text{bond}} + E_{\text{rep}} \tag{1}$$

(где E_{bond} — энергия заполненных электронных уровней, E_{rep} — феноменологическая энергия) минимизируется по характерным линейным параметрам каркаса кластера для расчета его геометрии и энергетики, соответствующих основному состоянию.

Феноменологическая энергия, учитывающая межэлектронное и межъядерное взаимодействия, представляется суммой парных отталкивательных потенциалов

$$E_{\rm rep} = \sum_{i < j} V_{\rm rep}(|r_i - r_j|), \qquad (2)$$

где i, j — номера взаимодействующих атомов; r_i, r_j — декартовы координаты. Функция V_{rep} определяется выражением [18]

$$V_{\rm rep}(r) = V_{\rm rep}^0 \left(\frac{1.54}{r}\right)^{4.455} \times \exp\left\{4.455 \left[-\left(\frac{r}{2.32}\right)^{22} + \left(\frac{1.54}{2.32}\right)^{22}\right]\right\}, \quad (3)$$

где $V_{\rm rep}^0 = 10.92 \, {\rm eV}.$

Энергия заполненных уровней определяется формулой

$$E_{\text{bond}} = 2 \sum_{n} \varepsilon_n,$$
 (4)

где ε_n — энергия заполненного состояния с номером *n*, собственное значение гамильтониана (цифра "2" учитывает спин электрона).

Межатомные матричные элементы гамильтониана задаются в виде [18]

$$V_{ij\alpha}(r) = V_{ij\alpha}^{0} \left(\frac{1.54}{r}\right)^{2.796} \times \exp\left\{2.796\left[-\left(\frac{r}{2.32}\right)^{22} + \left(\frac{1.54}{2.32}\right)^{22}\right]\right\}, \quad (5)$$

где r — расстояние между атомами; i, j — орбитальные моменты волновых функций; α — индекс, указывающий тип связи (σ или π).

Для расчета электронной структуры углеродных нанокластеров была проведена оригинальная параметризация значений атомных термов ε_s , ε_p и равновесных интегралов перекрытия $V_{ss\sigma}^0$, $V_{sp\sigma}^0$, $V_{pp\sigma}^0$, $V_{pp\pi}^0$ [21]. Параметризация хорошо зарекомендовала себя при расчете длин связей и энергетического спектра фуллеренов и однослойных нанотрубок [21]. Ее большим преимуществом перед аналогичными схемами [18–20] является возможность расчета потенциала ионизации, в то время как изначальный вариант параметризации [18] позволял лишь определять энергетическую щель (эта

О.Е. Глухова, А.И. Жбанов, А.Г. Резков

характеристика, применяемая для твердых тел, здесь обозначает не энергетический интервал между зонами, а промежуток между последним заполненным и первым вакантным уровнями). Последний заполненный уровень при этом совпадал с нулевым, что делало невозможным применение теоремы Купманса для вычисления ионизационного потенциала по электронному спектру. Рассчитанное значение потенциала ионизации фуллерена C_{60} очень хорошо согласуется с экспериментально найденным наравне с другими характеристиками (длинами связей и энергетической щелью).

3. Симметрия и электронные свойства свободного фуллерена С₂₀

Фуллерен С₂₀ является наименьшим синтезированным стабильным углеродным кластером с трехмерным строением. Исследование его химических и физических свойств, а также наночастиц с С20 осложняется тем, что единого мнения о симметрии клетки С20 не существует. Исследованию геометрического и электронного строения этого самого миниатюрного из фуллеренов посвящен ряд работ [22-28]. Общее мнение: отсутствие высокой икосаэдральной симметрии как у нейтрального C₂₀, так и у ионизованного C₂₀, которое объясняется эффектом Яна-Теллера. Однако расчеты геометрии и электронного строения фуллерена разными квантово-химическими методами определяют для его каркаса разные группы точечной симметрии: С2 или *C_i* [24], *C_s* [25], *D*_{3d} [26,28], *C*_{2h} [27]. Даже исследования одним методом — функционала плотности, но в различных приближениях — демонстрируют неодинаковость групп [24,26].

Расхождения в результате оптимизации геометрии и определения группы симметрии каркаса, образованного σ -электронами С₂₀, могут объсяняться особенностями используемых квантово-химических методов в расчете распределения электронной плотности, которая зависит в свою очередь от верного учета регибридизации, в

Рис. 1. Электронный спектр фуллерена C_{20} с симметрией D_{3d} .

Таблица	1.	Метрические	И	энергетические	характеристики
изомеров	C_{20}				

Длины связей, Å	C_{20}, D_{3d}	C_{20}, I_h ($C_{20}@C_{80}$)
r_{A-B}	1.461	1.425
r_{B-C}	1.469	_
r_{C-C}	1.514	_
r_{C-C} (двойная линия на рис. 1)	1.436	-
Межъядерные расстояния, Å		
d_{A-A}	4.047	3.997
d_{B-B}	4.085	_
d_{C-C}	4.147	—
Валентные углы, grad		
α	108.60	108.00
β	108.80	_
γ	107.00	_
δ	108.00	_
η	109.50	_
τ	108.50	—
Углы пирамидализации, grad		
θ_{1p}	20.36	20.89
θ_{2p}	20.43	_
θ_{3p}	21.23	-
Энергетические параметры		
E_1 , eV/atom	-42.36	-42.23
E_a , eV/atom	6.15	6.03
ΔH_f , kcal/mol · atom ⁻¹	29.42	32.32
I, eV	6.69	6.39
E_g, eV	2.88	3.52
Атомная электронная плотность		
Базис А	3.912	4.00
В	3.904	
С	4.062	

результате которой гибридизация в σ -связях становится $sp^{2+\Delta}$ вместо sp^2 [27].

Оптимальная геометрия и электронное строение C₂₀ были рассчитаны минимизацией полной энергии кластера по 54 координатам (шестью координатами задавалось положение молекулы в пространстве). Определить мультиплетность основного состояния применяемый метод сильной связи не позволяет, но регибридизация учитывается автоматически в ходе расчета энергии взаимодействия электронных облаков.

Начальные значения координат атомов соответствовали додекаэдральной решетке. Оптимизация по координатам обнаружила минимум полной энергии фуллерена при симметрии D_{3d} , что согласуется с результатами [26,28]. На рис. 1 показаны электронный спектр и фуллерен C₂₀ (D_{3d}) с указанием осей симметрии третьего и второго порядков, валентных углов α , β , γ , δ , η , τ , углов $\theta_{1\sigma\pi}$, $\theta_{2\sigma\pi}$, $\theta_{3\sigma\pi}$ между осями лепестков π и σ -электронов, и самой короткой длины связи (двойная линия). Показаны независимые атомные базисы

молекулы: А, В и С. При действии операциями симметрии на координаты одного атома можно восстановить координаты остальных из рассматриваемого базиса. Энергетические и метрические характеристики $C_{20}(D_{3d})$ приведены в табл. 1. В ней содержатся значения потенциала ионизации I, энергетической щели E_g , энергии E_1 молекулы и энергии атомизации Е_а (на атом), энтальпии ΔH_f ; электронные популяции на атомах базисов A, B, C (с учетом только валентных электронов); длин связей r (r_{A-B}, r_{B-C}, r_{C-C} — расстояния между атомами разных базисов), расстояний *d* между противоположными относительно центра инверсии атомами (индексы A, B, C характеризуют разные базисы); валентных и углов пирамидализации $\theta_{1p}, \theta_{2p}, \theta_{3p}$ $(\theta_p = \theta_{\sigma\pi} - 90^\circ).$ Обозначения углов соответствуют рис. 1. Как видно из данных таблицы 1, у C₂₀ наблюдается регибридизация и вместо sp^2 -атомы находятся в $sp^{2+\Delta}$ -состоянии [27], что делает его перспективным для полимеризации [23]. Степень регибридизации у атомов разных базисов варьируется в зависимости от угла пирамидализации и валентных углов. С уменьшением угла пирамидализации (позиции В и А на рис. 1) электронные популяции на атомах уменьшаются в связи с меньшей гибридизацией s- и p_π-облаков и увеличением энергии гибридных орбиталей. Увеличение электронной плотности позволяет прогнозировать большую химическую активность атомов базиса С и направленность в образовании связей.

4. Структура и энергетика соединения С₂₀@С₈₀

Для исследования C_{20} (C_{80} был взят икосаэдральный изомер C_{80} , имеющий большую энергию связи по сравнению с другими [29]. Длины связи были рассчитаны минимизацией полной энергии молекулы. Они составляют 1.425 и 1.458 Å соответственно, что хорошо согласуется с расчетами *ab initio* в [29], где для длин связей I_h -изомера дается интервал 1.43...1.47 Å. Форма икосаэдрального C_{80} наиболее близка к сферической (расстояние атомов до центра составляет 4.11...4.15 Å), что сочетается с геоидной формой C_{20} . Энтальпия $C_{80}(I_h)$ равна 13.66 kcal/mol·atom⁻¹.

Размеры клетки C_{80} не намного превышают C_{20} , поэтому можно ожидать, что для C_{20} в поле внешней оболочки будет наблюдаться не больше одного стабильного положения и центры фуллеренов будут совпадать, но возможны относительное вращение оболочек и изомеризация C_{20} в поле внешней оболочки. Задача наших исследований заключалась в обнаружении структуры C_{20} в поле внешней оболочки, расчете энергетических характеристик основного состояния наночастицы C_{100} , изучении возможной переориентации и вращения C_{20} при передаче соединению определенного количества энергии.

Рис. 2. Электронный спектр наночастицы $C_{20}@C_{80}$: с симметрией C_5 , соответствующей основному состоянию (*a*); с симметрией C_2 , определяющей наногироскоп (*b*).

В нулевом приближении центры C_{20} и внешней оболочки задавались в одной точке, которая была принята за начало координат системы. Симметрия C_{80} определялась группой I_h , $C_{20}-D_{3d}$. Ось пятого порядка внешнего фуллерена и ось третьего порядка C_{20} совпадали с осью Z. Симметрия и параметры основного состояния $C_{20}@C_{80}$ были обнаружены минимизацией полной энергии, в которой учитывались энергия зонной структуры, межьядерное и межэлектронное взаимодействия внутри каждой оболочки [21], энергия взаимодействия между атомами разных оболочек, рассчитываемая по формуле Леннарда–Джонса [30]

$$U_i = \frac{A}{\sigma^6} \left(\frac{1}{2} y_0^6 \frac{1}{(r_i/\sigma)^{12}} - \frac{1}{(r_i/\sigma)^6} \right).$$
(6)

Выражение (6) позволяет вычислить потенцил взаимодействия пары атомов различных оболочек. Здесь r_i расстояние между атомами *i*-й парой, $\sigma = 1.42$ Å — длина С–С связи, $y_0 = 2.7$ и $A = 24.3 \cdot 10^{-79}$ J · m⁶ — эм-

Параметры	Минимумы э	нергии E _{tot}	Максимум Etot	Конформация гироскопа
Значения полной энергии	Глобальный —4237.262 eV	Локальный —4235.696 eV	Глобальный —4233.943 eV	-4234.592 eV
Группы симметрии и угловые координаты	$C_5(arphi_y; arphi_z) \ (0^\circ; 0^\circ), \ (0^\circ; 26^\circ) \ (116^\circ; 34^\circ)$	$D_{5d} \ (63.5^\circ; 49^\circ) \ (53.5^\circ; 13^\circ)$	$T \\ (90^{\circ}; 49^{\circ}) \\ (26.5^{\circ}; 13^{\circ})$	$\begin{array}{c} C_2 \\ (37.38^\circ; 0^\circ) \\ (79.19^\circ; 0^\circ) \end{array}$
$r_1(C_{80}), Å$	1.551	1.528	1.533	1.533
$r_2(C_{80}), Å$	1.500	1.532	1.532	1.531
$r(C_{20}), Å$	1.426	1.425	1.424	1.424
R_{80} , Å	4.342	4.391	4.395	4.393
R_{20} , Å	1.998	1.997	1.995	1.996
$I(\mathrm{C}_{80}),\mathrm{eV}$	6.627	6.629	6.623	6.625
$I(C_{20})$, eV	6.392	6.392	6.392	6.392
$I(C_{20}@C_{80}), eV$	6.392	6.392	6.392	6.392
$E_g(\mathrm{C}_{80})$	1.839	1.839	1.828	1.832
$E_g(\mathrm{C}_{20})$	3.536	3.537	3.545	3.542
$E_g(C_{20}@C_{80})$	1.604	1.603	1.587	1.599
E_1 , eV/atom	-42.373	-42.357	-42.339	-42.346
E_a , eV/atom	6.167	6.152	6.134	6.143
ΔH , kcal/mol \cdot atom ⁻¹	29.049	29.394	29.808	29.647
$\mathrm{C}_{80} + \mathrm{C}_{20}(D_{3d}) ightarrow \mathrm{C}_{100}$				

Таблица 2. Характеристики конформаций C₂₀@C₈₀ поверхности потенциальной энергии E_{tot}

пирически подобранные параметры. Энергия взаимодействия оболочек определялась суммированием по всем атомам одной оболочки парных потенциалов взаимодействия U_i между каждым атомом этой оболочки и всеми атомами другой оболочки.

Минимизацией энергии по координатам всех атомов определено основное состояние наночастицы С100. Оно описывается симметрией C₅ (I_h@I_h). Энтальпия C₁₀₀ равна 29.04 kcal/mol · atom⁻¹. При этом фуллерен С₂₀ в поле удерживающего потенциала в результате изомеризации с изменением ориентации относительно внешней оболочки (оси пятого порядка С₂₀ и внешней оболочки теперь совпадали) восстановил высокую симметрию от D_{3d} до I_h . На рис. 2, *а* показаны ориентация C_{20} внутри С₈₀ и электронный спектр наночастицы, а также демонстрируется наложение спектров оболочек с образованием энергетической щели Eg в спектре наночастицы, меньшей по сравнению с Eg для фуллеренов в свободном состоянии. В табл. 2 для наночастицы приведены некоторые метрические и энергетические характеристики соединения, в том числе радиусы сфер оболочек R и энтальпия ΔH реакции $C_{20}(D_{3d}) + C_{80}(I_h) \rightarrow C_{100}$. Остальные обозначения такие же, как в табл. 1.

Рассчитана поверхность полной энергии E_{tot} наночастицы при поворотах $C_{20}(I_h)$ внутри $C_{80}(I_h)$. Исходная геометрия наночастицы соответствовала основному состоянию (глобальному минимуму энергии). Вращение C_{20} осуществлялось последовательными поворотами оси пятого порядка C_{20} на угол φ_z вокруг оси Z и на φ_y вокруг Y (рис. 2, a). Расчет поверхности E_{tot}

осуществлялся минимизацией энергии наночастицы по трем параметрам: длине связи икосаэдрального C_{20} и двум длинам связи внешнего фуллерена. В процессе поворотов C_{20} и оптимизации оболочек двухслойного кластера симметрия изменялась от $C_5(C_{100})$ до D_{5d} , T, C_2 , C_{2h} и C_l . При этом энергия обнаружила множество локальных минимумов (рис. 3, *a*). В работе [31], где исследовалась стабильность соединения $C_{20}@C_{60}$, повороты C_{20} выполнялись при условии сохранения симметрии D_{5d} системы.

Анализ многоямной поверхности энергии и карты энергетических изолиний (рис. 3, *b*) показывает периодичность изменения энергии по оси *Z* с шагом 72° и по оси *Y* с шагом 180°. В табл. 2 приведены значения энергии наночастицы E_{tot} , геометрические и энергетические характеристики конформаций, соответствующих локальным минимумам (с высокой симметрией), глобальному максимуму и промежуточному значению энергии (особенность этой конформации поясняется далее). Координаты (φ_y , φ_z) точек поверхности, отвечающих конформациям, приведены с учетом периодичности по осям.

Из анализа полученных результатов следует, что все конформации наночастицы будут вести себя стабильно. Расстояние между оболочками составляет 2.344...2.4 Å (C_{100}), что на 1 Å меньше межслойного расстояния графита. Химических связей между атомами оболочек нет.

Обнаружены некоторые закономерности в энергетике наночастицы.

Потенциал ионизации одинаков для всех конформаций C_{100} , так как в спектрах двухслойных кластеров последний заполненный уровень определяется соответствующим четырехкратно вырожденным уровнем C_{20} , значение которого не меняется. У всех конформаций наночастиц энергетическая щель у́же, чем у образующих их фуллеренов. Этот эффект объясняется наложением спектров внутренней оболочки и внешней, что демонстрирует рис. 2.

5. Наногироскоп С₂₀ в соединении С₂₀@С₈₀

В результате сканирования поверхности полной энергии наночастицы было обнаружено, что на поверхности существуют "особые" изолинии, расположенные между грядой локальных максимумов и минимумов, которые могут быть реализованы вращением C₂₀ около оси Z

Рис. 3. Поверхность полной энергии наночастицы $C_{20}@C_{80}$ при последовательных поворотах вокруг оси Z и Y: общий вид (*a*); карта изолиний поверхности полной энергии (вид сверху) (*b*).

при фиксированном угле ϕ_{y} . Ось Z совпадает с осью второго порядка С₂₀. Энрегия изолиний и их положение показаны на рис. 3, b. Геометрия и энергетика такой конформации соединения приведены в табл. 2. Энтальпия перехода $C_{100}(C_5) \rightarrow C_{100}(C_2)$ составляет 59.8 kcal/mol. Если системе С₂₀@С₈₀ подается энергия, превышающая 59.8 kcal/mol, то, возможно, начавшееся в глобальном минимуме относительное вращательное колебание оболочек не завершится переходом в состояние $C_{100}(C_2)$, а продолжится вращением C₂₀ вокруг оси Z (своей оси симметрии второго порядка, рис. 2, b), т.е. появлением гироскопа. Тогда подача энергии частице возможна в ряде процессов, в том числе при ориентационном плавлении [9], при квазиупругом и неупругом столкновении фуллеренов, сопровождающемся передачей 1.5...21.5 eV энергии фуллеренам, с увеличением их температуры и потенциальной энергии на 5...10 eV [32]. Если оценить энергию вращения, можно вычислить частоту наногироскопа

$$\frac{kT}{2} = \frac{J\omega^2}{2},\tag{7}$$

где k — постоянная Больцмана, J — момент инерции, T — температура, ω — угловая скорость вращения. Для C₂₀ $J = 8.332 \cdot 10^{-38} \text{ g} \cdot \text{cm}^2$. Например, если превышение указанной энтальпии будет соответствовать увеличению температуры всего на 0.01 K (при квазиупругом центральном столкновении фуллеренов [32]), то $\omega = 4.07 \cdot 10^9 \text{ rad/s}$ (6.48 $\cdot 10^8 \text{ s}^{-1}$). Молекулярный вес наногироскопа равен 240. Для сравнения при T = 300 Kдля молекулы дезоксирибонуклеиновой кислоты с молекулярным весом 1.2 $\cdot 10^8$, содержащей 1.2 $\cdot 10^4$ витков, с радиусом витка 6.7 Å частота $\omega = 3.8 \cdot 10^8 \text{ rad/s}$ [33].

6. Заключение

Проведенная оптимизация геометрии нейтрального C_{20} обнаружила, что основное состояние определяется геометрией D_{3d} . При этом, если в свободном состоянии икосаэдральный фуллерен C_{20} теряет высокую симметрию остова, то в поле C_{80} происходит изометризация, восстанавливающая клетку пентагонального додекаэдра.

Изучение модели C_{20} (C_{80} позволяет заключить, что наночастица сохраняет стабильность во всех точках поверхности полной энергии; предполагать наличие ориентационного плавления частицы с переходом в соседние глобальные и локальные минимумы в результате относительного вращательного колебания оболочек [9]; прогнозировать при подаче определенного количества энергии возникновение наногироскопа C_{20} внутри C_{80} . Также можно предположить, что подобное вращение внутренней оболочки будет справедливым и для целого ряда наночастиц. Если явление подтвердится экспериментально, то наномеханика углеродных кластеров получит новое направление развития.

Список литературы

- [1] S. Iijima. J. Cryst. Growth 50, 675 (1980).
- [2] S. Iijima. Nature (London) **354**, 56 (1991).
- [3] D. Ugarte. Chem. Phys. Lett. 198, 6, 596 (1992).
- [4] V.L. Kuznetsov, A.L. Chuvilin, Y.V. Butenko, I.Y. Mal'kov, V.M. Titov. Chem Phys. Lett. 222, 343 (1994).
- [5] S. Tomita, M. Fujii, S. Hayashi, K. Yamamoto. Chem. Phys. Lett. 114, 7477 (2001).
- [6] D. Ugarte. Nature (London) 359, 707 (1992).
- [7] F. Banhart, T. Fuller, P. Redlich, P.M. Ajayan. Chem. Phys. Lett. 269, 349 (1997).
- [8] M. Porto, M. Urbakh, J. Klafter. Phys. Rev. Lett. 84, 26(I), 6058 (2000).
- [9] Ю.Е. Лозовик, А.М. Попов. ФТТ 44, 1, 180 (2002).
- [10] W.A. de Heer, D. Ugarte. Chem. Phys. Lett. 207, 480 (1993).
- [11] S. Tomita, S. Hayashi, Y. Tsukuda, M. Fujii. ΦΤΤ 44, 3, 433 (2002).
- [12] A. Maiti, C.J. Brabec, J. Bernholc. Phys. Rev. Lett. 70, 20, 3023 (1993).
- [13] Jian Ping Lu, W. Yang. Phys. Rev. B 49, 16, 11421 (1994-II).
- [14] Y.-L. Lin, F. Nori. Phys. Rev. B 49, 7, 5020 (1994-I).
- [15] M.I. Heggie, M. Terrones, B.R. Eggen, G. Jungnickel, R. Jones, C.D. Latham, P.R. Briddon, H. Terrones. Phys. Rev. B 57, 21, 13 339 (1998-I).
- [16] D. Toma'nek, W. Zhong, E. Krastev. Rev. B 48, 20, 15461 (1993-II).
- [17] Q. Ru, M. Okamoto, Y. Kondo, K. Takayanagi. Chem. Phys. Lett. 259, 425 (1996).
- [18] L. Goodwin. J. Phys.: Condens. Matter. 3, 3869 (1991).
- [19] Н.В. Хохряков, С.С. Савинский. ФТТ 36, 12, 3524 (1994).
- [20] Н.В. Хохряков, С.С. Савинский, Дж.М. Молина. Письма в ЖЭТФ 62, 7, 595 (1995).
- [21] О.Е. Глухова, А.И. Жбанов. ФТТ 45, 1, 180 (2003).
- [22] K. Tanaka, H. Ago, T. Yamabe, K. Okahara, M. Okada. Int. J. Quant. Chem. 63, 637 (1997).
- [23] S. Okada, Y. Miyamoto, M. Saito. Phys. Rev. B 64, 245405 (2001).
- [24] Z. Wang, P. Day, R. Pachter. Chem. Phys. Lett. 248, 121 (1996).
- [25] M. Sawtarie, M. Menon, K.R. Subbaswamy. Phys. Rev. B 49, 11, 7739 (1994).
- [26] G. Galli, F. Gygi, J.-C. Golaz. Phys. Rev. B 57, 3, 1860 (1998).
- [27] M. Saito, Y. Miyamoto. Phys. Rev. Lett. 87, 035 503 (2001).
- [28] А.Л. Чистяков, И.В. Станкевич. ФТТ 44, 3, 565 (2002).
- [29] K. Nakao, N. Kurita, M. Fujita. Phys. Rev. B 49, 16, 11415 (1994).
- [30] D. Qian, W.K. Liu, R.S. Ruoff. J. Phys. Chem. B 105, 10753 (2001).
- [31] И.В. Станкевич, А.Л. Чистяков, М.И. Скворцова. Изв. Академии наук. Сер. хим. *3*, 436 (1999).
- [32] Y. Xia, Y. Xing, C. Tan, L. Mei. Phys. Rev. B 53, 13871 (1996).
- [33] Ч. Киттель, У. Наит, М. Рудерман. Механика. Наука, М. (1978).

382