Колебательные и электронные свойства нанокристаллического композита Cu₉₀Nb₁₀

© М.Г. Землянов, Г.Х. Панова, Г.Ф. Сырых, А.А. Шиков

Российский научный центр "Курчатовский институт", 123182 Москва, Россия E-mail: shikov@isssph.kiae.ru

(Поступила в Редакцию 20 мая 2004 г.)

Исследованы колебательные, электронные и сверхпроводящие свойства композита Cu₉₀Nb₁₀ при переходе от крупнозернистого к нанокристаллическому состоянию с помощью метода рассеяния нейтронов и измерений низкотемпературной теплоемкости. Обнаружены увеличение плотности низкочастотных возбуждений в нанокомпозите по сравнению с крупнозернистым образцом и уменьшение плотности электронных состояний и температуры сверхпроводящего перехода, связанных с размерным эффектом.

Работа поддержана Российским фондом фундаментальных исследований (проект № 03-02-16803-а).

Научный интерес к нанокристаллическим системам определяется уникальностью их физических свойств. Изучение влияния размерных эффектов на колебательные и термодинамические свойства нанокристаллов представляется актуальным. Более глубокое понимание структурных особенностей наноматериалов, закономерностей влияния поверхностных атомов и межзеренных границ на колебательные и термодинамические свойства несомненно будет способствовать значительному прогрессу в областях применения наноструктурных систем.

Исследование компактных наносистем имеет ряд преимуществ перед исследованием порошкообразных объектов по ряду причин. Компактные наносистемы имеют более высокую степень диспергирования (порядка 10 nm) в сочетании с более узким распределением по размеру частиц и характеризуются отсутствием пористости, что исключает существование специфических межгранульных контактов и соответствующих им взаимодействий.

Такие системы были получены и исследованы в ряде работ [1-3]. Так, в [1] методом волочения проволок Nb в меди был приготовлен композит, состоящий из тонких нитей Nb, расположенных в медной матрице. Диаметр полученных нитей составлял менее 100 nm. В работе [2] для получения композита Cu-Nb было использовано два метода: кристаллизация с последующей деформацией сплавов медь-ниобий и механическая сборка с волочением биметаллической медь-ниобиевой проволоки. Поперечный размер волокон изменялся от 2.5 до 20 nm. В [3] была синтезирована нанокристаллическая система, состоящая из Pb (20 wt.%) диспергированного в матрицу металлического стекла Al₇₅Cu₁₅V₁₀ с помощью метода быстрой закалки из жидкого состояния на холодной поверхности. Размер полученных частиц изменялся от 5 до 100 nm. Во всех этих работах исследовалось только влияние размерных эффектов на сверхпроводящие свойства (температуру сверхпроводящего перехода, критический ток, критическое магнитное поле). Было установлено, что уменьшение размера частиц приводит

к понижению всех сверхпроводящих параметров. Вопрос об исследовании влияния размерного эффекта на электронные и фононные свойства самого композита и системы наночастиц до настоящего времени изучен слабо. Получение такой информации возможно только при проведении комплексных исследований с использованием различных методов.

Цель настоящей работы — изучение колебательных, электронных и сверхпроводящих свойств композита Cu₉₀Nb₁₀ при переходе его от крупнозернистого к нанокристаллическому состоянию с помощью методов рассеяния нейтронов, исследования низкотемпературной теплоемкости и измерения температуры сверхпроводящего перехода индуктивным методом. Эти измерения дают информацию об энергетическом спектре колебательной системы и изменениях плотности электронных состояний на поверхности Ферми, представляющих большой интерес для понимания природы наблюдаемых изменений при переходе от крупнозернистого к нанокристаллическому состоянию.

1. Приготовление образца и его характеристика

Нанокристаллический образец $Cu_{90}Nb_{10}$ был получен с помощью закалки из жидкого состояния на наружной поверхности вращающегося медного диска в атмосфере очищенного аргона. Исходные элементы помещались в ампулу из нитрида бора. Нагрев осуществлялся индукционным методом с помощью высокочастотного генератора ВЧГ6-60/0.44. Расплав выдавливался избыточным давлением аргона через отверстие диаметром 1 mm на поверхность диска, имеющую линейную скорость 40 m/s. Оценочная скорость закалки составляла ~ 10⁶ K/s.

Отжиг полученного образца проводился в токе газообразного гелия в кварцевой ампуле, помещенной в муфельную печь. Первый отжиг проводился при температуре 477°C в течение 3 часов, второй при 770°C в течение 4 часов.

Рис. 1. Рентгенограмма композита $Cu_{90}Nb_{10}$ в закаленном (1) и отожженном (2) состояниях при $T = 477^{\circ}C$ в течение 3 часов.

Структура полученного образца и влияние отжига на его состояние определялись с помощью рентгеновского излучения $Co(K_{\alpha})$ на дифрактометре ДРОН-2. Соответствующие рентгенограммы представлены на рис. 1. Рентгенограмма указывает на присутствие рефлексов Си и Nb. Узкие линии Си свидетельствуют о том, что медь находится в крупнозернистом состоянии. Линии Nb значительно уширены. Методом Селякова–Шеррера [4] был определен средний размер кристаллитов Nb, который составил для закаленного образца ~ 20 nm. После отжига при 477°C в течение 3 часов ширина линий Си практически не изменяется, а для Nb наблюдается заметное сужение линии, ширина которой соответствует среднему размеру кристаллитов Nb ~ 30 nm. Дальнейший отжиг при 770°C в течение 4 часов в тех же условиях не привел к заметному изменению ширины линии Nb. Таким образом, существенное влияние температуры отжига на рост нанокристаллов Nb следует ожидать в области предплавления медной матрицы.

2. Экспериментальные результаты и их обсуждение

Неупругое рассеяние нейтронов на нано- и крупнозернистых образцах $Cu_{90}Nb_{10}$ измерялось на спектрометре КДСОГ-М [5], установленном на реакторе ИБР-2 (Дубна). Измерения выполнены при комнатной температуре для углов рассеяния 80° , 100° , 120° и 140° . Результаты обработки в некогерентном приближении представлены на рис. 2 как обобщенные функции спектрального распределения колебательных состояний [6] в исходном и закаленном образцах $Cu_{90}Nb_{10}$. На рис. 3 показано относительное изменение этих функций. Видно, что для нанокристаллического образца плотность низкоэнергетических колебаний выше, чем для крупнокристаллического образца.

Теплоемкость образцов измерялась в адиабатическом калориметре с импульсным нагревом [7] в области температур 1.5–35 К. Экспериментальная ошибка определения теплоемкости составляла 2% в температурной области 1.5–4 К, 1% в области 4–10 К и 0.2–0.5% в области 10–35 К. Температура сверхпроводящего перехода определялась по скачку теплоемкости, индуктивности и сопротивления.

На рис. 4 показано поведение низкотемпературной теплоемкости этих же образцов в интервале температур

Рис. 2. Обобщенная плотность колебательных состояний G(E) композита Cu₉₀Nb₁₀ в нанокристаллическом (1) и крупнозернистом состояниях (2).

Рис. 3. Относительное изменение обобщенной плотности колебательных состояний композита Cu₉₀Nb₁₀ при переходе от нанокристаллического к крупнозернистому состоянию.

50

0

Рис. 4. Низкотемпературная теплоемкость нанокристаллического образца $Cu_{90}Nb_{10}$ до (1) и после (2) отжига и крупнозернистого образца (3) в интервале температур 1.5-12 К.

 T^2 , K^2

100

150

Рис. 5. Теплоемкость нанокристаллического Nb, выделенная из теплоемкости Cu₉₀Nb₁₀ в области температур 1.5–12 К.

Рис. 6. Температурная зависимость *ac* магнитной восприимчивости нанокристаллического образца $Cu_{90}Nb_{10}$ до (*1*) и после отжига (*2*) при $T = 477^{\circ}C$, после повторного отжига (*3*) при $T = 770^{\circ}C$ и крупнозернистого образца (*4*).

1.5–12 К в координатах C/T от T^2 . В нанокомпозите Cu₉₀Nb₁₀ наблюдается размытый сверхпроводящий переход от 3 до 7 К. После отжига при $T = 477^{\circ}$ С в течение 3 часов сверхпроводящий переход сместился в сторону больших температур с температурой перехода $T_c \sim 7.0$ К. Для крупнозернистого образца температура сверхпроводящего перехода составила $T_c \sim 8.8$ К.

На рис. 5 приведена разность температурных зависимостей теплоемкостей нанокристаллического композита Си₉₀Nb₁₀ и металлической Си [8]. С учетом слабого взаимодействия атомов Cu и Nb в композите Cu₉₀Nb₁₀ это различие обусловлено в основном вкладом наночастиц Nb. Полученная температурная зависимость теплоемкости позволила определить дебаевскую температуру $\Theta(0)$ и коэффициент электронной теплоемкости $\gamma(0)$, являющиеся колебательными и электронными характеристиками наночастиц Nb в композите Cu₉₀Nb₁₀, и провести сравнение указанных параметров с массивным образцом Nb [9]. Экспериментальные данные представлены в таблице, из которой следует, что в нанокристаллическом Nb коэффициент электронной теплоемкости $\gamma(0)$, дебаевская температура $\Theta(0)$ и T_c уменьшаются по сравнению с массивным образцом Nb.

Колебательные и электронные характеристики крупнозернистого образца, нанокристаллического композита Cu₉₀Nb₁₀ до и после отжига, нанокристаллического Nb и массивных образцов Nb и Cu

Образец	<i>Т</i> _с , К	$\gamma(0),$ mJ/mol.K ²	Θ(0), K
Си ₉₀ Nb ₁₀ (крупнозернистый)	8.8	1.4	319
Си ₉₀ Nb ₁₀ (нанокомпозит до отжига)	3 - 7	1.2	328
Си ₉₀ Nb ₁₀ (нанокомпозит после отжига)	7.0	1.68	348
Cu	_	0.73	334
Nb (массив)	9.2	8.5	252
Nb (нанокомпозит)	3 - 7	3.0	240

Наблюдаемое изменение T_c , дебаевской температуры, плотности электронных состояний в зависимости от термообработки свидетельствует о влиянии размерного эффекта на указанные характеристики композита. С уменьшением величины нанокристалла значения этих параметров также уменьшаются. Возникновение дополнительных низкоэнергетических мод в нанокристаллическом композите, очевидно, связано с сильным влиянием поверхностных атомов и межзеренных границ, а также с взаимной ориентацией соседних кристаллов.

Результаты измерений температуры сверхпроводящего перехода исследованных образцов индуктивным методом представлены на рис. 6. Эти данные подтверждают обнаруженный по теплоемкости размытый сверхпроводящий переход в нанокристалле при $T_c = 3-7$ К. Отжиг при $T = 447^{\circ}$ С приводит к существенно более узкому сверхпроводящему переходу при ~ 7 К. Увеличение отжига до 770°С не приводит к дальнейшему изменению величины и ширины сверхпроводящего перехода. Это обстоятельство согласуется с данными рентгенографических исследований, в которых не наблюдается дальнейшее сужение XRD-рефлексов при повторном отжиге. Для сравнения на рис. 6 приведены результаты измерений температуры сверхпроводящего перехода для крупнозернистого композита.

В результате проведенных исследований установлено влияние размерного эффекта на колебательный и электронный спектры и сверхпроводящие свойства нанокристаллов Nb в композите Cu₉₀Nb₁₀. Из сравнения Nb в нанокристаллическом состоянии с массивным образцом следует, что уменьшаются температура сверхпроводящего перехода, температура Дебая и плотности электронных состояний на уровне Ферми. Уменьшение температуры Дебая согласуется с результатами нейтронных исследований, в которых обнаружено увеличение плотности низкоэнергетических состояний. Эти изменения исследованных характеристик указывают на то, что определяющим фактором являются размерные эффекты, приводящие к ослаблению межатомных взаимодействий, и в первую очередь на границах зерен [10].

Список литературы

- H.E. Cline, B.P. Strauss, R.M. Rose, J. Wulff. J. Appl. Phys. 37, 1, 5 (1966).
- [2] М.М. Олексиенко, В.Т. Петренко, М.А. Тихоновский, А.П. Бердник. Вопросы атомной науки и техники. Научнотехнический сборник. Харьков. (1980). В. 3 (13). С. 29.
- [3] A.P. Tsai, N. Chandrasekhar, K. Chattopadhyay. Appl. Phys. Lett. 75, 11, 1527 (1999).
- [4] С.С. Горелик, Л.Н. Расторгуев, Ю.А. Скаков. Рентгенографический и электронно-оптический анализ. Металлургия, М. (1970). 141 с.
- [5] Г. Балука, А.В. Белушкин, С.И. Брагин, Т. Залески, М.З. Ишмухаметов, И. Натканец, В. Олеярчик, Я. Павелчик. Препринт № Р13-84-242. ОИЯИ, Дубна (1984).
- [6] Н.А. Черноплеков, М.Г. Землянов, Е.Г. Бровман, А.Г. Чечерин. ФТТ 5, 112 (1963).
- [7] М.Н. Хлопкин, Н.А. Черноплеков, П.А. Черемных. Препринт ИАЭ № 3549/10. М. (1982).
- [8] J.A. Kok, W.H. Keesom. Physica 3, 1035 (1936).
- [9] A. Brown, M.W. Zemansky, H.A. Boorse. Phys. Rev. 86, 134 (1952).
- [10] P.M. Derlet, R. Meyer, L.J. Lewis, U. Stuhr, H. Van Swygenhoven. Phys. Rev. Lett. 87, 20, 205501-1 (2001).