01;02;03;10 Потеря электронов быстрыми ионами H⁻ в газах

© В.И. Радченко, Д.А. Кожухов, В.Н. Кудрявцев

Уральский государственный технический университет, 620002 Екатеринбург, Россия

(Поступило в Редакцию 26 августа 1998 г.)

В релятивистском варианте теории рассеяния Бете выполнены расчеты характерных углов и сечений для процесса (10)+(11) потери электронов ионами H⁻ с энергией 0.1–10000 MeV при рассеянии на атомах C, N и O. На основе правила аддитивности получены сечения для молекулярных мишеней N₂, O₂ и CO₂. Результаты настоящих расчетов сравниваются с известными экспериментальными и теоретическими данными.

Введение

Практические задачи оптимизации пучков частиц связаны чаще всего с уменьшением поперечных размеров пучка в некоторой "контрольной" зоне его транспортировки. Необходимость уменьшения поперечных размеров пучка выдвигает проблему снижения его эмиттанса. Как правило, величина эмиттанса определяется "техническими" процессами, происходящими в ионном источнике, на этапах ускорения и формирования пучка частиц и др. Однако в таких задачах, как транспортировка энергии с помощью пучка высокоэнергетичных атомов водорода на большие расстояния, пучок атомов H⁰ формируется в результате прохождения исходных ионов Нчерез газовую или тонкопленочную мишень, вследствие чего эмиттанс пучка атомов Н⁰ включает в себя принципиально нестранимую "физическую" составляющую, обусловленную рассеянием частиц в мишени. Таким образом, предельно малые значения оптимизируемых эмиттанса и других угловых характеристик пучка атомов Н⁰ будут определяться процессом (10) нейтрализации ионов Н- в мишени. Вместе с тем в пучковых технологиях, основанных на преобразовании заряда частиц в мишени, появляется проблема энергетической оптимизации такого преобразования, зависящая от требований, предъявляемых к пучку в "контрольной" зоне. Сечение σ_{10} потери электрона ионами $\mathrm{H^-}$ вместе с сечением σ_{01} потери электрона атомами H⁰ позволяют рассчитать эффективность конверсии ионов Н⁻ в атомы [1], т.е. найти максимальную долю энергии пучка ионов Н-, которая может быть преобразована в энергию пучка атомов водорода. Сказанное свидетельствует о важности изучения процесса нейтрализации ионов Н- в соответствующих задачах оптимизации параметров пучка атомов водорода.

Цель настоящей работы — вычислить характерные углы и сечения σ_{Σ} процесса $(\bar{1}0) + (\bar{1}1)$ потери одного и двух электронов ионами H⁻ с энергией $E = 10^{-1} - 10^4$ MeV в столкновениях с атомами C, N, O в приближении дипольного момента (ПДМ) для атома мишени [1].

Теория

Концепция ПДМ заключается в следующем. Предполагается, что любой атом мишени в первом приближении можно считать бесструктурной частицей, создающей вокруг себя электрическое поле, которое на малых расстояниях от ядра атома описывается потенциалом Томаса-Ферми, а на больших — дипольным потенциалом. Вводится понятие эффективного дипольного момента атома, среднее значение квадрата которого представляется в виде суммы средних значений квадратов радиус-векторов $\langle r_{nl}^2 \rangle$ отдельных атомных электронов, занимающих оболочки с квантовыми числами n, l (все величины берутся в атомных единицах). В расчет эвристическим образом включаются поправки, связанные с учетом соотношения между средней скоростью v_{nl} орбитального движения электрона и скоростью v столкновения, а также с учетом общей поляризации электронной оболочки атома мишени в поле падающей частицы. Дифференциальные сечения рассеяния частиц на дипольном потенциале и потенциале Томаса-Ферми "сшиваются" в точке взаимного пересечения так, что рассеянию на малые углы соответствует рассеяние на диполе.

Формулы для дифференциальных сечений рассеяния частиц на указанных потенциалах получены в работе [1] в рамках теории рассеяния Бете. Основную роль в ПДМ играет соотношение для дифференциального сечения рассеяния на диполе

$$\frac{d\sigma^d_{\alpha_f\alpha_i}(\theta)}{d\Omega} = 4\left(\frac{M_A}{m}\right)^2 \left(\frac{d}{ea_0}\right)^2 \frac{k_f}{k_i} \left|F^A_{\alpha_f\alpha_i}(\mathbf{q})\right|^2 \frac{\cos^2\gamma}{q^2}, \quad (1)$$

где θ — угол рассеяния в лабораторной системе координат; m, M_A — массы электрона и налетающей частицы A; e — элементарный заряд; a_0 — боровский радиус; $\mathbf{k}_i, \mathbf{k}_f$ — волновые векторы частицы A до и после столкновения; $\mathbf{q} = \mathbf{k}_f - \mathbf{k}_i$; γ — угол между вектором \mathbf{q} и вектором \mathbf{d} эффективного дипольного момента атома мишени; $F_{\alpha_f\alpha_i}^A$ — формфактор налетающей частицы A, внутреннее состояние которой меняется в результате столкновения с α_i на α_f .

Мгновенный дипольный момент d атома [1] из формулы (1) представляет собой

$$\frac{\mathbf{d}}{ea_0} = -\sum_{i=1}^{Z_B} \mathbf{r}_i,\tag{2}$$

где Z_B — атомный номер атома мишени, \mathbf{r}_i — радиусвектор атомных электронов в единицах a_0 .

Усредняя (1) по ансамблю атомов мишени, приходим к необходимости усреднить квадрат суммы (2)

$$\langle d^2 \rangle = \int \left(\sum_{i=1}^{Z_B} \mathbf{r}_i \right)^2 \cdot \left| \Psi_B(r_1, \dots, r_{Z_B}) \right|^2 \cdot d\tau_B, \quad (3)$$

где Ψ_B — волновая функция атома мишени *B*, $d\tau_B$ — элемент конфигурационного пространства Z_B электронов атома *B*.

Возводя выражение (2) в квадрат и вычисляя интеграл (3), найдем, что

$$\langle d^2 \rangle = \sum_{i=1}^{Z_B} \langle r_i^2 \rangle = \sum_{n,l} N_{nl} \cdot \langle r_{nl}^2 \rangle, \tag{4}$$

где N_{nl} — число электронов на подоболочке с квантовыми числами n, l; для заполненных подоболочек $N_{nl} = 2(2l + 1).$

В соответствии с формулой (4) поправку на усреднение дипольного момента атома мишени за время столкновения будем вводить для каждого орбитального электрона в отдельности и будем исходить из того, что каждый электрон участвует в создании мгновенного дипольного момента $\mathbf{d}_{nl} = -e\mathbf{u}_{nl}$, где $\mathbf{u}_{nl} = \langle r_{nl}^2 \rangle^{1/2} \mathbf{r}_{nl} / r_{nl}$. Далее заметим, что дифференциальное сечение рассеяния (1) равно нулю, если векторы **d** и **q** перпендикулярны друг другу, поэтому сначала необходимо найти среднее значение проекции вектора \mathbf{d}_{nl} на волновой вектор \mathbf{q} за время столкновения, а затем усреднить квадрат найденного среднего значения проекции по направлениям вектора **q** в пространстве. Так как модуль вектора \mathbf{d}_{nl} остается неизменным, то по существу усредняется функция $\cos(\gamma_{nl})$, где γ_{nl} — угол между векторами \mathbf{d}_{nl} и **q**. Среднее значение $\cos(\gamma_{nl})$ за время столкновения τ следует вычислять с некоторым весовым коэффициентом, так как относительная роль величины мгновенного дипольного момента \mathbf{d}_{nl} в начальный $t \approx 0$ и конечный $t \approx \tau$ периоды столкновения невелика в сравнении с его величиной при $t \approx \tau/2$. В качестве весового множителя использовалась функция

$$p(t) = \frac{2}{\tau} \sin^2\left(\frac{\pi t}{\tau}\right),$$

нормированная на единицу в промежутке от 0 до τ .

Опуская промежуточные вычисления, выпишем для искомой величины (3) окончательное выражение, уточняющее выражение (4),

$$\langle d^2 \rangle = \frac{2}{3} \sum_{n,l} N_{nl} \cdot \langle r_{nl}^2 \rangle \frac{1 - \cos(\alpha_{nl})}{\alpha_{nl}^2 \cdot \left[1 - (\alpha_{nl}/2\pi)^2\right]^2},$$
 (5)

Журнал технической физики, 2000, том 70, вып. 2

где угол

$$\alpha_{nl} = 5.262 \frac{\langle r_{nl}^2 \rangle}{\langle r_{nl} \rangle} \frac{v_{nl}}{v}.$$
 (6)

При $\alpha_{nl} \to 0$ величина $\langle d^2 \rangle$ будет представлять собой квадрат проекции мгновенного дипольного момента атома на вектор **q**, усредненный по ориентации вектора **d** в пространстве (т. е. относительно **q**).

В поле налетающего иона H⁻ электронная оболочка атома мишени поляризуется, смещаясь относительно центра массы атома в направлении, противоположном мгновенному положению иона, на некоторое расстояние ρ . Расстояние ρ представляет собой среднее значение суммы проекций радиус-векторов электронов атома на ось, соединяющую атом и ион. В ПДМ это можно интерпретировать как увеличение эффективного расстояния p, на котором происходит взаимодействие сталкивающихся частиц, на величину ρ . Будем полагать, что сечение σ_{Σ}^{p} , исправленное с учетом поправки на поляризацию, будет связано с исходным сечением σ_{Σ} равенством

$$\sigma_{\Sigma}^{p} = \sigma_{\Sigma} \cdot \left(1 + \frac{\rho}{p}\right)^{-4}, \tag{7}$$

так как сечение рассеяния в приближении мгновенного дипольного момента пропорционально квадрату матричного элемента **М** (формула (34) из [1]), который в свою очередь обратно пропорционален квадрату расстояния между частицами (формула (32) из [1]). Для соотношения ρ/p в работе [2] получена оценочная формула

$$\frac{\rho}{p} = \frac{0.265 \cdot Z_B}{I \cdot d \cdot v} \mu \left(0.0255 \cdot I \cdot d^{1/2} \cdot v^{-1} \right), \tag{8}$$

где

$$\mu(x) = e^{-x} \overline{E}_i(x) - e^x \cdot E_i(-x), \qquad (9)$$

 \overline{E}_i и E_i — модифицированная и обычная интегральные показатели функции, I — потенциал ионизации атома, $d = \sqrt{3 \cdot \langle d^2 \rangle}$; численные значения коэффициентов в формуле (8) соответствуют тому, что I измеряется в eV, а v — в единицах 10⁹ cm/s.

Результаты расчетов

В релятивистском варианте [3] ПДМ с учетом поправок на движение электронов и поляризацию электронной оболочки атома мишени в поле налетающего иона H⁻ вычислены характерные углы и полные сечения рассеяния частиц водорода в процессе ($\overline{10}$) + ($\overline{11}$) на атомах С, N, O. Под характерным углом в настоящей работе понимается значение θ , при котором достигается максимум произведения $\sin \theta \cdot d\sigma(\theta)/d\Omega$. Средние значения $\langle r_{nl} \rangle$ и $\langle r_{nl}^2 \rangle$, а также скорости v_{nl} , входящие в формулы (5), (6), были получены с помощью некоррелированных одноэлектронных волновых функций Рутаана–Хартри– Фока из таблиц [4]. Сведения о потенциалах ионизации атомов, необходимые в расчетах поправок к сечениям на поляризацию атома мишени, взяты из справочника [5].

E, MeV	$ heta_{1/2}$	С	Ν	О
0.1	103	1679	1502	1242
0.12	94.1	1517	1372	1169
0.15	84.1	1320	1207	1059
0.2	72.7	1083	1000	906
0.3	59.3	798	743	696
0.4	51.3	634	593	566
0.5	45.9	527	494	477
0.7	38.7	395	371	364
1	32.4	288	272	269
1.15	30.2	254	240	239
1.67	25.1	180	171	172
2	22.9	152	145	146
3	18.7	104	99.2	100.6
5	14.5	64.0	61.1	62.3
6.9	12.3	47	44.8	45.8
10	10.2	32.8	31.4	32.1
10.4	10.0	31.6	30.2	31
12	9.31	27.5	26.3	27
14.9	8.35	22.4	21.4	21.9
20	7.20	16.9	16.1	16.5
25	6.42	13.6	13	13.4
30	5.86	11.4	11	11.3
40	5.06	8.74	8.37	8.61
50	4.52	7.11	6.81	7.01
70	3.79	5.24	5.02	5.17
100	3.14	3.83	3.68	3.78
200	2.15	2.2	2.11	2.17
300	1.70	1.65	1.59	1.63
500	1.25	1.23	1.18	1.21
700	1.00	1.05	1.01	1.03
800	0.912	0.994	0.953	0.982
1000	0.777	0.920	0.882	0.909
1500	0.567	0.826	0.793	0.817
2000	0.448	0.784	0.752	0.775
3000	0.310	0.746	0.716	0.738
5000	0.185	0.722	0.692	0.714

Характерные углы и сечения процесса потери электронов ионами H^- в атомарных (с, N, O) мишенях (углы — в mrad, сечения в ед. 10^{-18} cm²)

Результаты расчетов, выполненных в данной работе для диапазона энергии ионов $H^- E = 0.1 \div 10000$ Меу, помещены в таблицу. Энергетическая зависимость характерных углов $\theta_{1/2}$ и сечений σ_{Σ} , их сравнение с другими теоретическими и экспериментальными данными иллюстрируется рис. 1–3. Сечения σ_{Σ} для молекулярных мишеней N₂, O₂, CO₂ найдены по правилу аддитивности. Сечения σ_{Σ} , вычисленные в настоящей работе для мишеней из атомарных азота и кислорода, совпадают с расчетами из работы [9].

0.708

0.680

0.700

10000

0.084

На основе анализа полученных результатов можно сделать следующие выводы.

1. Характерные углы $\theta_{1/2}$ не зависят от типа мишени и в области энергии E < 100 MeV изменяются по одному и тому же закону $E^{-1/2}$. С ростом E энергетическая зави-

симость усиливается. При $E \approx 10000 \,\text{MeV}$ характерные углы $\theta_{1/2} \propto E^{-1}$.

2. Вычисленные в данной работе углы $\theta_{1/2}$ в ≈ 2 раза больше характерных углов, измеренных в работе [6]. Основная причина расхождения, по-видимому, заключается в том, что ПДМ является двухчастичным при-

Рис. 1. Энергетическая зависимость характерных углов рассеяния $\theta_{1/2}$ для процесса потери электронов ионами H⁻. Теоретические результаты: 1 — расчеты из настоящей работы; 2 — расчеты из работы [7], 3 — расчеты из работы [8]. Экспериментальные данные (×) взяты из работ [2,6] для Co₂ мишени.

Рис. 2. Энергетическая зависимость сечений σ_{Σ} потери электронов ионами H⁻ в мишенях N₂ и O₂: сплошные кривые — результаты расчетов настоящей работы (сечения σ_{Σ} , вычисленные в работе [9] для мишеней из атомов азота и кислорода и диапазона энергии ионов H⁻ E = 1-1000 MeV, удвоение в соответствии с правилом аддитивности, в масштабах рисунка совпадают с нашими данными). Экспериментальные данные для мишени O₂ (\Box) и диапазона энергии ионов H⁻, E = 1.67-14.9 MeV из работы [10]; для N₂ (•) и E = 0.9-1.3 MeV из [11] и E = 0.2-0.5 MeV из [12].

Рис. 3. Энергетическая зависимость сечения σ_{Σ} потери электронов ионами H⁻ в CO₂ мишени: сплошная кривая — результаты расчетов настоящей работы; экспериментальные данные (\blacktriangle) для E = 1.67-14.9 MeV из работы [10]; для E = 0.9-1.3 MeV из [11]; для E = 0.2-0.5 MeV из [12].

ближением. Расчеты [7], проведенные в трехчастичном борновском приближении, дают для углов $\theta_{1/2}$ значения, которые приблизительно в 2.3 раза меньше, чем в ПДМ.

3. Сечения σ_{Σ} ведут себя с ростом энергии *E* одинаковым образом для всех частиц-мишеней и графически представляют собой ниспадающие кривые, асимптотически стремящиеся при $v \rightarrow c$ к некоторому пределу. При E > 1 MeV сечения σ_{Σ} для всех рассмотренных атомарных мишеней практически совпадают (различные < 7%).

4. Теоретические кривые $\sigma_{\Sigma}(E)$ спадают быстрее экспериментальных, пересекая последние в области E = 10-20 MeV [2]. В этой же области энергии всякого рода поправками к сечению σ_{Σ} с погрешностью < 3% можно пренебречь, поэтому при значении E = 10 MeV, при котором достаточно легко провести соответствующие измерения, целесообразно использовать ПДМ для систематического построения зависимости $\sigma_{\Sigma}(Z_B)$; ПДМ является легко реализуемым приближением, и такая задача не вызовет принципиальных затруднений.

Список литературы

- [1] Радченко В.И. // ЖЭТФ. 1994. Т. 105. Вып. 4. С. 834-852.
- [2] Радченко В.И. Докт. дис. Екатеринбург, 1996.
- [3] Inokuti M. // Rev. Mod. Phys. 1971. Vol. 43. N 3. P. 297-347.
- [4] Clementi E., Roetti C. // Atomic Data and Nuclear Data Tables. 1974. V. 14. P. 177–478.
- [5] Радциг А.А., Смирнов Б.М. Параметры атомов и атомных ионов. Справочник. М.: Энергоатомиздат, 1986. 344 с.
- [6] Ведьманов Г.Д., Лазарев Ю.Г., Радченко В.И. // ЖТФ. 2000. Т. 70. Вып. 2. С. 81–86.
- [7] Johnstone J.A. // NIM Phys. Res. B. 1990. Vol. 52. N 1. P. 1-8.

- [8] Lee Y.T., Chen J.C.Y. // Phys. Rev. A. 1979. Vol. 19. N 2. P. 526–533.
- [9] Riesselmann K., Anderson L.W., Durand L., Anderson C.J. // Phys. Rev. A. 1991. Vol. 43. N 11. P. 5934–5945.
- [10] Радченко В.И., Ведьманов Г.Д. // ЖЭТФ. 1995. Т. 107. Вып. 1. С. 3–19.
- [11] Димов Г.И., Дудников В.Г. // ЖТФ. 1966. Т. 36. Вып. 7. С. 1239–1240.
- [12] Kovacs I. // NIM. 1967. Vol. 51. N 2. P. 224-230.