Вычисление электрической емкости системы проводов круглого и эллиптического сечения и в виде пластин в присутствии проводящей плоскости

© 3.М. Наркун

01

Гродненский государственный университет им. Я. Купалы, 230023 Гродно, Белоруссия

(Поступило в Редакцию 27 марта 1998 г. В окончательной редакции 30 января 1999 г.)

Предлагается метод вычисления электрических емкостей системы параллельных бесконечно длинных проводов круглого и эллиптического сечения и в виде пластин в присутствии проводящей плоскости. Метод основан на точном построении потенциала электростатического поля. Указан алгоритм получения приближенных расчетных формул. Рассмотрены некоторые частные случаи.

В справочнике [1] приведены приближенные расчетные формулы для вычисления электрических емкостей на единицу длины одно-, двух- и трехпроводных линий параллельных бесконечно длинных проводов круглого сечения в присутствии проводящей плоскости. В настоящей работе эта задача решается для любого конечного числа проводов круглого и эллиптического сечения, и в виде пластин.

Рассматриваемая электростатическая система является плоскопараллельной, поэтому в дальнейшем плоскость, перпендикулярная осям проводов, принимается за координатную плоскость xOy, а вместо проводов и плоскости рассматриваются окружности, эллипсы, отрезки прямых и прямая, по которым плоскость xOy пересекает систему проводов.

Все величины с линейными размерами считаются безразмерными, т.е. рассматриваются по отношению к некоторой выбранной единице масштаба. Пусть в полуплоскости x < 0 имеется N_1 окружностей Γ_j радиусов R_j с центрами в точках O_j , $j = 1, N_1$ и N_2 ($N_1 + N_2 = N$) эллипсов Γ_j с центрами в точках O_j , $J = \overline{N_1 + 1}, N$, причем часть эллипсов (или все) может вырождаться в отрезки прямых. Окружности и эллипсы расположены внешним образом по отношению друг к другу и не имеют общих точек ни между собой, ни с осью ординат X = 0.

Математически задача определения потенциала φ электростатического поля состоит в нахождении в полуплоскости x < 0 и вне Γ_j , $j = \overline{1, N}$ (область G) решения уравнения Лапласа

$$\Delta \varphi = 0, \tag{1}$$

ограниченного на бесконечности и удовлетворяющего граничным условиям

$$\varphi\Big|_{x=0} = 0, \quad \varphi\Big|_{\Gamma_j} = f_j, \quad j = \overline{1, N},$$
 (2), (3)

где f_j равны нулю или единице в зависимости от вычисляемой емкости.

Для решения задачи обозначим зеркальные отображения кривых Γ_j относительно прямой x = 0 через $\bar{\Gamma}_j$, \bar{O}_j — образцы центров O_j . Свяжем с каждой окружностью Γ_j , $\bar{\Gamma}_j$, $j = \overline{1, N_1}$, локальные декартовые $x_j O_j y_j$, $\bar{x}_j \bar{O}_j \bar{y}_j$ и полярные (ρ_j, Θ_j) , $(\bar{\rho}_j, \bar{\Theta}_j)$ координаты, а с каждым эллипсом Γ_j , $\bar{\Gamma}_j$, $j = \overline{N_1 + 1}$, \overline{N} — локальные декартовые $x_j O_j y_j$, $\bar{x}_j \bar{O}_j \bar{y}_j$ и эллиптические (μ_j, ϑ_j) , $(\bar{\mu}_j, \bar{\vartheta}_j)$ координаты [2], так что в связанных с окружностью Γ_j полярных координатах ее уравнение будет

$$o_j = R_j, \qquad j = \overline{1, N_1},$$

а в связанных с эллипсом Γ_j эллиптических координатах его уравнение

$$\mu_j = \mu_j^0, \quad \mu_j^0 = \text{const}, \quad j = \overline{N_1 + 1, N}.$$

В частности, если некоторые $\mu_k^0 = 0$, то эллипс превращается в отрезок прямой длины h_k . В дальнейшем учитывается, что полярные оси сонаправлены с осью Ox, оси $\bar{O}_j \bar{y}_j$ являются зеркальными отображениями осей $O_j y_j$, а оси $\bar{O}_j \bar{x}_j$ выбираются так, чтобы системы координат $\bar{x}_j \bar{O}_j \bar{y}_j$ были правыми.

Потенциал φ поля будем искать в виде

$$\begin{split} \varphi(M) &= A + \sum_{j=1}^{N} \left(A_j \ln \frac{1}{\rho_j} + \bar{A}_j \ln \frac{1}{\bar{\rho}_j} \right) \\ &+ \sum_{j=1}^{N_1} \sum_{k=1}^{\infty} \left[\left(a_k^j \cos k\Theta_j + b_k^j \sin k\Theta_j \right) \rho_j^{-k} \right. \\ &+ \left(\bar{a}_k^j \cos k\bar{\Theta}_j + \bar{b}_k^j \sin k\bar{\Theta}_j \right) \bar{\rho}_j^{-k} \right] \\ &+ \sum_{j=N_1+1}^{N} \sum_{k=1}^{\infty} \left[\left(a_k^j \cos k\vartheta_j + b_k^j \sin k\vartheta_j \right) \exp(-k\mu_j) \right. \\ &+ \left(\bar{a}_k^j \cos k\bar{\vartheta}_j + \bar{b}_k^j \sin k\bar{\vartheta}_j \right) \exp(-k\mu_j) \right], \end{split}$$

где $M \in G$ — любая точка; $(\rho_j, \Theta_j), (\bar{\rho}_j, \bar{\Theta}_j)$ ее координаты в полярных системах с полюсами O_j , $\bar{O}_j, j = \overline{1, N_1}$; $(\mu_j, \vartheta_j), (\bar{\mu}_j, \bar{\vartheta}_j)$ — ее координаты в эллиптических системах координат с центрами O_j, \bar{O}_j , $j = \overline{N_1 + 1, N}$; коэффициенты подлежат определению из граничных условий и условия на бесконечности.

Подчеркнем, что если в (4) (и в дальнейшем) в сумме по ј верхний индекс меньше нижнего (что будет, если нет окружностей: $N_1 = 0$, или нет эллипсов: $N_2 = 0$, $N = N_1$), то соответствующая сумма принимается равной нулю. В дальнейшем также считаются равными нулю величины с индексами, если начальное значение индекса меньше конечного; например, $A_s = 0$, если $s = \overline{1, 0}$.

Для ограниченности функции (4) на бесконечности и удовлетворения условию (2) достаточно положить

$$A = 0, \quad \bar{A}_j = -A_j, \quad \bar{a}_k^j = -(1)^{k+1} a_k^j,$$

 $\bar{b}_k^j = (-1)^k b_k^j, \qquad j = \overline{1, N}, \qquad k = 1, 2, \dots$

Для определения оставшихся коэффициентов $A_{i}, a_{k}^{j}, b_{k}^{j}$ выразим с помощью теорем сложения для разделенных решений уравнения Лапласа в полярных [3], эллиптических [4] системах, где учтено, что оси декартовых координат не обязательно параллельны, и введены новые обозначения и полярных, и эллиптических [2]; все переменные в (4) в локальных координатах, связанных с Γ_s , $s = \overline{1, N}$. Применим условия (3) и приравняем в получившихся равенствах коэффициенты при функциях соѕ и sin от соответствующих аргументов. В результате получим бесконечную систему линейных алгебраических уравнений.

1) Для иллюстрации этой схемы проведем выкладки более подробно в случае одного эллипса. Для произвольно расположенных декартовых координат с различными началами формулы (14) и (15) из [4] запишем в виде

$$\exp(-k\mu_{1})\cos k\vartheta_{1} = \sum_{\nu=0}^{\infty} \varepsilon_{\nu} \Big[Ac_{\nu}^{(k)}(\mu_{21}, \vartheta_{21}; h_{2}/h_{1}, \alpha_{21}) \\ \times \operatorname{ch} \nu\mu_{2}\cos \nu\vartheta_{2} + As_{\nu}^{(k)}(\mu_{21}, \vartheta_{21}; h_{2}/h_{1}, \alpha_{21}) \\ \times \operatorname{sh} \nu\mu_{2}\sin \nu\vartheta_{2} \Big], \quad \mu_{2} < \mu_{21}, \\ \exp(-k\mu_{1})\sin k\vartheta_{1} = \sum_{\nu=0}^{\infty} \varepsilon_{\nu} \Big[As_{\nu}^{(k)}(\mu_{21}, \vartheta_{21}; h_{2}/h_{1}, \alpha_{21}) \\ \times \operatorname{ch} \nu\mu_{2}\cos \nu\vartheta_{2} - Ac_{\nu}^{(k)}(\mu_{21}, \vartheta_{21}; h_{2}/h_{1}, \alpha_{21}) \\ \times \operatorname{sh} \nu\mu_{2}\sin \nu\vartheta_{2} \Big], \quad \mu_{2} < \mu_{21},$$
(5)

Г

$$\begin{aligned} &Ac_{\nu}^{(k)}(\mu,\vartheta;h,\alpha) \\ &= (-1)^{k} \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \frac{k(n+2r+k-1)!(n+\nu+2r+k-1)!}{h^{2r+k}n!(n+\nu)!r!(k+r)!(2r+k-1)!} \\ &\times \exp\Big[-(2n+\nu+2r+k)\mu\Big] \\ &\times \cos\Big[(2n+\nu+2r+k)\vartheta + (2r+k)\alpha\Big], \end{aligned}$$

 $As_{\nu}^{(k)}(...)$ получается из $Ac_{\nu}^{(k)}(...)$ заменой функции соѕ на sin; (μ_i, ϑ_i) — координаты произвольной точки в *і*-й эллиптической системе координат, связанной с соответствующей декартовой системой формулами

$$x_i = \frac{1}{2}h_i \operatorname{ch} \mu_i \cos \vartheta_i, \quad y_i = \frac{1}{2}h_i \operatorname{sh} \mu_i \sin \vartheta_i; \quad i = 1, 2,$$

 μ_{21}, ϑ_{21} — координаты старого начала O_1 в новой системе; α_{21} — угол между осями $O_1 x_1$ и $O_2 x_2$, отсчитываемый от оси $O_1 x_1$ против часовой стрелки; $\varepsilon_0 = 1, \, \varepsilon_{\nu} = 2$ для $\nu > 0.$

Потенциал (4) имеет вид

$$\varphi(M) = A_1 \left(\ln \frac{1}{\rho_1} - \ln \frac{1}{\rho_1} \right)$$

+
$$\sum_{k=1}^{\infty} \left[\left(a_k^1 \cos k\vartheta_1 + b_k^1 \sin k\vartheta_1 \right) \exp(-k\mu_1) + (-1)^{k+1} \left(a_k^1 \cos k\bar{\vartheta}_1 - b_k^1 \sin k\bar{\vartheta}_1 \right) \exp(-k\bar{\mu}_1) \right]. \quad (6)$$

Для удовлетворения граничному условию на эллипсе Г₁ выразим с помощью формулы (6) из [4]

$$\ln \frac{1}{\rho_1} = \ln \frac{4}{h_2} - \mu_{21} + 2 \sum_{\nu=1}^{\infty} \frac{1}{\nu} \Big(\operatorname{ch} \nu \mu_2 \cos \nu \vartheta_{21} \cos \nu \vartheta_2 + \operatorname{sh} \nu \mu_2 \sin \nu \vartheta_2 \Big) \exp(-\nu \mu_{21}),$$

формул (5) и функции источника в эллиптических координатах [5]

$$\ln \frac{1}{\rho_1} = \ln \frac{4}{h_1} - \mu_1 + 2\sum_{\nu=1}^{\infty} \frac{1}{\nu} \exp(-\nu\mu_1) \cos \nu \frac{\pi}{2} \cos \nu \vartheta_1,$$

все переменные в (6) — через μ_1 , ϑ_1 . В результате получим (с учетом принятых обозначений, которые пояснены ниже)

$$\begin{split} \varphi(M) &= A_1 \Big[-\mu_1 + 2 \sum_{\nu=1}^{\infty} \frac{1}{\nu} \exp(-\nu\mu_1) \cos \frac{\nu\pi}{2} \cos \nu \vartheta_1 \\ &+ \bar{\mu}_{11} - 2 \sum_{\nu=1}^{\infty} \frac{1}{\nu} (\operatorname{ch} \nu \mu_1 \cos \nu \bar{\vartheta}_{11} \cos \nu \vartheta_1 \\ &+ \operatorname{sh} \nu \mu_1 \sin \nu \bar{\vartheta}_{11} \sin \nu \vartheta_1) \exp(-\nu \bar{\mu}_{11}) \Big] \\ &+ \sum_{\nu=1}^{\infty} \left(a_{\nu}^1 \cos \nu \vartheta_1 + b_{\nu}^1 \sin \nu \vartheta_1 \right) \exp(-\nu \mu_1) \\ &- \sum_{k=1}^{\infty} (-1)^k a_k^1 \sum_{\nu=0}^{\infty} \varepsilon_{\nu} \Big[A c_{\nu}^{(k)}(\bar{\mu}_{11}, \bar{\vartheta}_{11}; 1, \bar{\alpha}_{11}) \operatorname{ch} \nu \mu_1 \cos \nu \vartheta_1 \\ &+ A s_{\nu}^{(k)}(\bar{\mu}_{11}, \bar{\vartheta}_{11}; 1, \bar{\alpha}_{11}) \operatorname{sh} \nu \mu_1 \sin \nu \vartheta_1 \Big] \end{split}$$

Журнал технической физики, 2000, том 70, вып. 2

$$+\sum_{k=1}^{\infty} (-1)^{k} b_{k}^{1} \sum_{\nu=0}^{\infty} \varepsilon_{\nu} \Big[A s_{\nu}^{(k)}(\bar{\mu}_{11}, \bar{\vartheta}_{11}; 1, \bar{\alpha}_{11}) \operatorname{ch} \nu \mu_{1} \cos \nu \vartheta_{1} \\ - A c_{\nu}^{(k)}(\bar{\mu}_{11}, \bar{\vartheta}_{11}; 1, \bar{\alpha}_{11}) \operatorname{sh} \nu \mu_{1} \sin \nu \vartheta_{1} \Big].$$

Отсюда, удовлетворяя граничному условию $\varphi(M)|_{\Gamma_1} = \varphi(M)|_{\mu_1=\mu_1^0} = 1$, в силу единственности разложения в ряд Фурье, получим следующую бесконечную систему линейных алгебраических уравнений:

$$A_{1}(\bar{\mu}_{11} - \mu_{1}^{0}) - \frac{1}{2} \sum_{k=1}^{\infty} \left(\xi_{0k}^{1} A_{k}^{1} - \tilde{\omega}_{0k} B_{k}^{1}\right) = 1,$$

$$\varepsilon_{\nu}^{1} A_{1} + A_{\nu}^{1} - \sum_{k=1}^{\infty} \left(\xi_{\nu k}^{1} A_{k}^{1} - \tilde{\omega}_{\nu k} B_{k}^{1}\right) = 0,$$

$$\tilde{\varepsilon}_{\nu}^{1} A_{1} + B_{\nu}^{1} - \sum_{k=1}^{\infty} \left(\tilde{\xi}_{\nu k}^{1} A_{k}^{1} + \omega_{\nu k}^{1} B_{k}^{1}\right) = 0; \quad \nu = 1, 2, \dots, \quad (7)$$

которая получается при $N_1 = 0$, $N_2 = 1$ из приведенной ниже системы для произвольных N_1 и N_2 ; там же определены новые переменные и коэффициенты системы.

 Проделав аналогочные выкладки в общем случае, получим следующую систему:

$$\begin{aligned} -A_s \ln q_s + & \sum_{j=1, j \neq s}^N A_j \ln \frac{\bar{\rho}_{sj}}{\rho_{sj}} \\ &+ \sum_{k=1}^\infty \left[-A_k^s q_s^k + \sum_{j=1, j \neq s}^{N_1} \left(\sigma_{0k}^{sj} A_k^j + \tilde{\tau}_{0k}^{sj} B_k^j \right) \right. \\ &+ & \sum_{j=N_1+1}^N \left(\alpha_{0k}^{sj} A_k^j + \tilde{\beta}_{0k}^{sj} B_k^j \right) \right] = f_s. \end{aligned}$$

$$\begin{split} A_{q}(\bar{\mu}_{qq} - \mu_{q}^{0}) &+ \sum_{j=1, j \neq q}^{N} A_{j}(\bar{\mu}_{qj} - \mu_{qj}) \\ &+ \frac{1}{2} \sum_{k=1}^{\infty} \left[\sum_{j=1}^{N_{1}} \left(\gamma_{0k}^{qj} A_{k}^{j} + \tilde{\delta}_{0k}^{qj} B_{k}^{j} \right) - \xi_{0k}^{q} A_{k}^{q} + \tilde{\omega}_{0k}^{q} B_{k}^{q} \right. \\ &+ \sum_{j=N_{1}+1, j \neq q}^{N} \left(\eta_{0k}^{qj} A_{k}^{j} + \tilde{\zeta}_{0k}^{qj} B_{k}^{j} \right) \right] = f_{q}, \\ &- \frac{1}{\nu} q_{s}^{\nu} A_{s} + \sum_{j=1, j \neq s}^{N} \sigma_{\nu}^{sj} A_{j} + A_{\nu}^{s} \\ &+ \sum_{k=1}^{\infty} \left[-L_{\nu k} q_{s}^{\nu + k} A_{k}^{s} + \sum_{j=1, j \neq s}^{N_{1}} \left(\sigma_{\nu k}^{sj} A_{k}^{j} + \tilde{\tau}_{\nu k}^{sj} B_{k}^{j} \right) \right. \\ &+ \sum_{j=N_{1}+1}^{N} \left(\alpha_{\nu k}^{sj} A_{k}^{j} + \tilde{\beta}_{\nu k}^{sj} B_{k}^{j} \right) \right] = 0, \end{split}$$

1* Журнал технической физики, 2000, том 70, вып. 2

$$\begin{split} \sum_{j=1, j \neq s}^{N} \tilde{\sigma}_{\nu}^{sj} A_{j} + B_{\nu}^{s} + \sum_{k=1}^{\infty} \left[-L_{\nu k} q_{s}^{\nu + k} B_{k}^{s} \right. \\ &+ \sum_{j=1, j \neq s}^{N_{1}} \left(\tilde{\sigma}_{\nu k}^{sj} A_{k}^{j} - \tau_{\nu k}^{sj} B_{k}^{j} \right) \\ &+ \sum_{j=N_{1}+1}^{N} \left(\tilde{\alpha}_{\nu k}^{sj} A_{k}^{j} - \beta_{\nu k}^{sj} B_{k}^{j} \right) \right] = 0, \\ \tilde{\varepsilon}_{\nu}^{q} A_{q} + \sum_{j=1, j \neq q}^{N} \tau_{\nu}^{qj} A_{j} + A_{\nu}^{q} \\ &+ \sum_{k=1}^{\infty} \left[\sum_{j=1}^{N_{1}} \left(\gamma_{\nu k}^{qj} A_{k}^{j} + \tilde{\delta}_{\nu k}^{qj} B_{k}^{j} \right) - \xi_{\nu k}^{q} A_{k}^{q} + \tilde{\omega}_{\nu k}^{q} B_{k}^{q} \\ &+ \sum_{j=N_{1}+1, j \neq q}^{N} \left(\eta_{\nu k}^{qj} A_{k}^{j} + \tilde{\zeta}_{\nu k}^{qj} B_{k}^{j} \right) \right] = 0, \\ \tilde{\varepsilon}_{\nu}^{q} A_{q} + \sum_{j=1, j \neq q}^{N} \tilde{\tau}_{\nu}^{qj} A_{j} + B_{\nu}^{q} \\ &+ \sum_{k=1}^{\infty} \left[\sum_{j=1}^{N_{1}} \left(\tilde{\gamma}_{\nu k}^{qj} A_{k}^{j} - \delta_{\nu k}^{qj} B_{k}^{j} \right) - \tilde{\xi}_{\nu k}^{q} A_{k}^{q} - \omega_{\nu k}^{q} B_{k}^{q} \\ &+ \sum_{j=N_{1}+1, j \neq q}^{N} \left(\tilde{\eta}_{\nu k}^{qj} A_{k}^{j} - \zeta_{\nu k}^{qj} B_{k}^{j} \right) = 0; \\ s = \overline{1, N_{1}}; \quad q = \overline{N_{1} + 1, N}; \quad \nu = 1, 2, \dots, \end{split}$$
(8)

где

$$egin{aligned} &A^s_
u &= a^s_
u R^{-
u}_s, \quad B^s_
u &= b^s_
u R^{-
u}_s; \quad s = \overline{1, N_1}, \ &A^q_
u &= a^q_
u \exp(-
u \mu^0_q), \ &B^q_
u &= b^q_
u \exp(-
u \mu^0_q); \ &q = \overline{N_1 + 1, N}; \ &q_s &= rac{R_s}{2l_s}, \qquad L_{
u k} &= rac{(
u + k - 1)!}{
u!(k - 1)!}, \end{aligned}$$

 l_s — расстояние от точки O_s до прямой x = 0;

$$\begin{split} \varepsilon_{\nu}^{q} &= \frac{2}{\nu} \Big[\exp(-\nu\mu_{q}^{0}) \cos\nu\frac{\pi}{2} - \exp(-\nu\bar{\mu}_{qq}) \operatorname{ch}\nu\mu_{q}^{0} \cos\nu\bar{\vartheta}_{qq} \Big] \\ \tilde{\varepsilon}_{\nu}^{q} &= -\frac{2}{\nu} \exp(-\nu\bar{\mu}_{qq}) \operatorname{sh}\nu\mu_{q}^{0} \sin\nu\bar{\vartheta}_{qq}, \\ \sigma_{\nu}^{sj} &= \frac{1}{\nu} \left[\left(\frac{R_{s}}{\rho_{sj}} \right)^{\nu} \cos\nu\Theta_{sj} - \left(\frac{R_{s}}{\rho_{sj}} \right)^{\nu} \cos\nu\bar{\Theta}_{sj} \right], \\ \sigma_{\nu}^{sj} &= \frac{1}{\nu k} \Big[(-1)^{k} \left(\frac{R_{s}}{\rho_{sj}} \right)^{\nu} \left(\frac{R_{j}}{\rho_{sj}} \right)^{k} \cos(\nu + k)\Theta_{sj} \\ &- \left(\frac{R_{s}}{\bar{\rho}_{sj}} \right)^{\nu} \left(\frac{R_{j}}{\bar{\rho}_{sj}} \right)^{k} \cos(\nu + k)\bar{\Theta}_{sj} \Big], \end{split}$$

 $\tau_{\nu k}^{sj}$ получается из $\sigma_{\nu k}^{sj}$ заменой знака — между слагаемыми на +,

$$\tau_{\nu}^{qj} = \frac{2}{\nu} \Big[\exp(-\nu\mu_{qj}) \cos\nu\vartheta_{qj} \\ - \exp(-\nu\bar{\mu}_{qj}) \cos\nu\vartheta_{qj} \Big] \operatorname{ch}\nu\mu_{q}^{0}$$

 $\tilde{\sigma}_{\nu}^{sj}, \tilde{\sigma}_{\nu k}^{sj}, \tilde{\tau}_{\nu k}^{sj}, \tilde{\tau}_{\nu}^{qj}$ получаются из соответствуующих величин без волны заменой соs на sin, ch, на sh

$$\begin{aligned} \alpha_{\nu k}^{sj} &= R_s^{\nu} \left[L c_{\nu}^{(k)}(\rho_{sj},\Theta_{sj};h_j,\alpha_{sj}) \right. \\ &\left. - (-1)^k L c_{\nu}^{(k)}(\bar{\rho}_{sj},\bar{\Theta}_{sj};h_j,\bar{\alpha}_{sj}) \right] \exp k \mu_j^0; \end{aligned}$$

 $\beta_{\nu k}^{s j}$ получается из $\alpha_{\nu k}^{s j}$ заменой знака — между слагаемыми на +; $\tilde{\alpha}_{\nu k}^{s j}$, $\tilde{\beta}_{\nu k}^{s j}$ получаются из соответствующих величин без волны заменой $Lc_{\nu}^{(k)}(...)$ на $Ls_{\nu}^{(k)}(...)$; функции $Lc_{\nu}^{(k)}(...)$, $Ls_{\nu}^{(k)}(...)$, $Dc_{\nu}^{(k)}(...)$, $Ds_{\nu}^{(k)}(...)$ определены в [2];

$$\begin{split} \gamma_{\nu k}^{qj} &= 2R_{j}^{k} \Big[Dc_{\nu}^{(k)}(\mu_{sj}, \vartheta_{qj}; h_{q}, \alpha_{qj}) \\ &- (-1)^{k} Dc_{\nu}^{(k)}(\bar{\mu}_{qj}, \bar{\vartheta}_{qj}; h_{q}, \bar{\alpha}_{qj}) \Big] \operatorname{ch} \nu \mu_{q}^{0}, \\ \delta_{\nu k}^{qj} &= 2R_{j}^{k} \Big[Dc_{\nu}^{(k)}(\mu_{qj}, \vartheta_{qj}; h_{q}, \alpha_{qj}) \\ &+ (-1)^{k} Dc_{\nu}^{(k)}(\bar{\mu}_{qj}, \bar{\vartheta}_{qj}; h_{q}, \bar{\alpha}_{qj}) \Big] \operatorname{sh} \nu \mu_{q}^{0}, \\ \eta_{\nu k}^{qj} &= 2 \Big[Ac_{\nu}^{(k)}(\mu_{qj}, \vartheta_{qj}; h_{q}/h_{j}, \alpha_{qj}) \\ &+ (-1)^{k} Ac_{\nu}^{(k)}(\bar{\mu}_{qj}, \bar{\vartheta}_{qj}; h_{q}/h_{j}, \bar{\alpha}_{qj}) \Big] \exp k \mu_{j}^{0} \operatorname{ch} \nu \mu_{q}^{0} \\ \zeta_{\nu k}^{qj} &= 2 \Big[Ac_{\nu}^{(k)}(\mu_{qj}, \vartheta_{qj}; h_{q}/h_{j}, \alpha_{qj}) \Big] \end{split}$$

$$+ (-1)^{k} A c_{\nu}^{(k)}(\bar{\mu}_{qj}, \vartheta_{qj}; h_{q}/h_{j}, \bar{\alpha}_{qj}) \Big] \exp k \mu_{j}^{0} \operatorname{sh} \nu \mu_{q}^{0},$$

$$\xi_{\nu k}^{q} = 2(-1)^{k} \exp k \mu_{q}^{0} \operatorname{ch} \nu \mu_{q}^{0} A c_{\nu}^{(k)}(\bar{\mu}_{qq}, \bar{\vartheta}_{qq}; 1, \bar{\alpha}_{qq}),$$

$$\omega_{\nu k}^{q} = 2(-1)^{k} \exp k \mu_{q}^{0} \operatorname{sh} \nu \mu_{q}^{0} A c_{\nu}^{(k)}(\bar{\mu}_{qq}, \bar{\vartheta}_{qq}; 1, \bar{\alpha}_{qq}),$$

 $\tilde{\gamma}_{\nu k}^{q j}, \, \tilde{\delta}_{\nu k}^{q j}, \, \tilde{\eta}_{\nu k}^{q j}, \, \tilde{\zeta}_{\nu k}^{q j}, \, \tilde{\xi}_{\nu k}^{q}, \, \tilde{\omega}_{\nu k}^{q}$ получаются из соответствующих величин без волны, если заменить $X c_{\nu}^{(k)}(...)$ на $X s_{\nu}^{(k)}(...)$ и поменять местами сh и sh; $(\rho_{sj}, \Theta) s_{j}$), $(\bar{\rho}_{sj}, \bar{\Theta}_{sj})$ — координаты точек $O_{j}, \, \bar{O}_{j}$ в полярных координатах с полюсом O_{s} ; $(\mu_{qj}, \vartheta_{qj})$, $(\bar{\mu}_{qj}, \bar{\vartheta}_{qj})$ — координаты этих же точек в эллиптических координатах с центром O_{q} ; $\alpha_{pr}, \, \bar{\alpha}_{pr}$ — углы между осью $O_{p} x_{p}$ и соответственно осями $O_{r} x_{r}, \, \bar{O}_{r} \bar{x}_{r}$, отсчитываемые от последних против часовой стрелки; $p, r = \overline{1, N}$.

Так как окружности и эллипсы не имеют общих точек ни между собой, ни с прямой x = 0, то система (8) обладает вполне непрерывной формой [6] и в силу единственности решения рассматриваемой задачи имеет единственное решение, принадлежащее пространству l^2 , которое может быть найдено методом редукции. Из (4) вытекает, что

$$\int_{\Gamma_j} \frac{\partial \varphi}{\partial n} dl = 2\pi A_j; \quad j = \overline{1, N}, \tag{9}$$

т.е. для вычисления любой емкости достаточно знать только коэффициенты A_j , $j = \overline{1, N}$. Коэффициенты и свободные члены усеченной системы (минимальной размерности)

$$-A_{s} \ln q_{s} + \sum_{j=1, j \neq s}^{N} A_{j} \ln \frac{\bar{\rho}_{sj}}{\rho_{sj}} = f_{s},$$

$$A_{q}(\bar{\mu}_{qq} - \mu_{q}^{0}) + \sum_{j=1, j \neq q}^{N} A_{j}(\bar{\mu}_{qj} - \mu_{qj}) = f_{q}; \quad s = \overline{1, N_{1}};$$

$$q = \overline{N_{1} + 1, N}$$
(10)

полностью и однозначно определяют размеры и взаимное расположение проводов и граничные условия. Система (10) дает возможность определить все коэффициенты A_j , поэтому естественно ее использовать для приближенного вычисления электрических емкостей.

Подчеркнем, что если $s = \overline{1, 0}$, то (10) не содержит первого уравнения; если же $a = \overline{N_1 + 1}, N_1$ — второго.

3) Рассмотрим некоторые частные случаи.

а) $N_1 = 1, N_2 = 0.$ В этом случае система (10) примет вид

$$-A_1 \ln q_1 = 1,$$

$$C_l \approx 2\pi\varepsilon/(2l_1/R_1),$$

что согласуется с [1,(4)-(1)] с учетом свойства емкости [1,(B-18)].

Если же $N_1 = 0, N_2 = 1$, то система (10) примет вид

$$A_1(\bar{\mu}_{11} - \mu_1^0) = 1,$$

тогда

$$C_lpprox 2\piarepsilon/(ar\mu_{11}-\mu_1^0),$$

что согласуется с [7,(13)] с учетом того же свойства емкости. Для вычисления $\bar{\mu}_{11}$ можно использовать указанный в [7] способ.

б) $N_1 = 1, N_2 = 1$. Система (10) примет вид

$$-A_1 \ln q_1 + A_2 \ln(\bar{\rho}_{12}/\rho_{12}) = f_1,$$

$$A_1(\bar{\mu}_{21} - \mu_{21}) + A_2(\bar{\mu}_{22} - \mu_2^0) = f_2.$$
(11)

При $f_1 = 1, f_2 = 0$ (или наоборот) получим

$$C_{12} = C_{21} \approx \pi \varepsilon \left[\mu_{21} - \bar{\mu}_{21} + \ln(\rho_{12}) \bar{\rho}_{12}) \right] / \Delta \qquad (12)$$

(так как с помощью системы (11) получаем $C_{12} \neq C_{21}$, то здесь взято их среднее арифметическое значение).

При $f_1 = 1, f_2 = 1$ получим

$$C_{10} \approx 2\pi\varepsilon \left[\ln(\bar{\rho}_{12}/\rho_{12}) - (\bar{\mu}_{22} - \mu_2^0) \right] / \Delta,$$
 (13)

$$C_{20} \approx 2\pi\varepsilon \left[\ln q_1 + (\bar{\mu}_{21} - \mu_{21}) \right] / \Delta,$$
 (14)

где

$$\Delta = (\bar{\mu}_{21} - \mu_{21}) \ln(\bar{\rho}_{12}/\rho_{12}) + (\bar{\mu}_{22} - \mu_2^0) \ln q_1.$$

В частности, если центр окружности находится (в системе xOy) в точке $O_1(-l_1, 0)$, центр эллипса с полуосями a, b — в точке $O_1(-l_2, 0), l_2 > l_1$, большая ось эллипса перпендикулярна прямой x = 0, то ($c = \sqrt{a^2 - b^2}$)

$$\mu_{21} = \operatorname{Arch} \frac{l_2 - l_1}{c}, \qquad \bar{\mu}_{21} = \operatorname{Arch} \frac{l_1 + l_2}{c},$$
$$\bar{\mu}_{22} = \operatorname{Arch} \frac{2l_2}{c}, \qquad \mu_2^0 = \operatorname{Arch} \frac{a}{c},$$
$$\rho_{12} = l_2 - l_1, \qquad \bar{\rho}_{12} = l_1 + l_2.$$

Для вычисления погрешности формул (12)–(14) проводился численный эксперимент, состоящий в решении методом редукции системы (8) и сравнении "точного" значения емкости с приближенным. Система (8) в этом случае распадается на две: однородную для B_{ν}^{1} и B_{ν}^{2} с нулевым решением и неоднородную для A_{1} , A_{2} , A_{ν}^{1} , A_{ν}^{2} , $\nu = 1, 2, ...$. В таблице приведены некоторые результаты вычислений в этом частном случае для эллипса с полуосями a = 5, b = 3 и окружности радиуса $R_{1} = 5$ в зависимости от l_{1} и l_{2} .

		Значение $C_{12}/(2\pi\varepsilon)$		Относительная
l_1	l_2	"точное"	приближенное	ошибка, %
15.5	36.5	0.207196	0.203787	1.6452
15.5	46.5	0.129713	0.132149	-1.8774
25.5	46.5	0.222773	0.214002	3.9374
25.5	56.5	0.143918	0.143126	0.5500
25.5	66.5	0.107671	0.108142	-0.4381
35.5	56.5	0.232711	0.222177	4.5269
35.5	66.5	0.153371	0.151506	1.2160
35.5	76.5	0.116508	0.116210	0.2554
35.5	86.5	0.094395	0.094538	-0.1518

Отметим, что размерность усеченной системы для получения "точного" решения сильно зависит от взаимного расположения проводов и плоскости. Для получения приведенных в таблице значений с шестью верными знаками после точки достаточно взять десять уравнений, с тремя — пять. Если, например, $l_1 = 6$, $l_2 = 17$, то уже для получения значения с шестью верными знаками после точки нужно взять 38 уравнений.

На рисунке показаны эквипотенциальные линии поля. В силу симметрии линии изображены только для $y \ge 0$. Вычисления проведены для a = 3, b = 2, $R_1 = 2$, $l_1 = 5$, $l_2 = 16$.

Для любых N_1 и N_2 с помощью определителей легко написать приближенную расчетную формулу для вычисления любой емкости аналогично формулам [1, (6)–(21)].

Предложенный метод точного и приближенного вычисления электрических емкостей можно использовать в научной и практической деятельности инженерам и научным работникам различных специальностей.

Список литературы

- Иоссель Ю.Я., Кочанов Э.С., Струнский М.Г. Расчет электрической емкости. Л.: Энергоиздат, 1981. 288 с.
- [2] Наркун З.М. // Дифференциальные уравнение. 1983. Т. 19. № 4. С. 654–660.
- [3] Наркун З.М. // Исследование по математике и физике. Сб. ст. Гродно: Гродненский гос. университет, 1978. С. 144–147.
- [4] Наркун З.М. // Дифференциальные уравнения. 1979. Т. 15. № 2. С. 357–359.
- [5] Морс Ф.М., Фешбах Г. Методы теоретической физики. Т. 2.
 М.: ИЛ, 1960. 866 с.
- [6] Канторович Л.В., Крылов В.И. Приближенные методы высшего анализа. 5-е изд. М.; Л.: Физматгиз, 1962. 708 с.
- [7] Бойко В.К., Наркун З.М. // Электричество. 1991. № 2. С. 76–78.